Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955111921> ?p ?o ?g. }
- W2955111921 endingPage "57" @default.
- W2955111921 startingPage "48" @default.
- W2955111921 abstract "The optimization of heating, ventilating and air conditioning (HVAC) system operations and other building parameters intended to minimize annual energy consumption and maximize the thermal comfort is presented in this paper. The combination of artificial neural network (ANN) and multi-objective genetic algorithm (MOGA) is applied to optimize the two-chiller system operation in a building. The HVAC system installed in the building integrates radiant cooling system, variable air volume (VAV) chiller system, and dedicated outdoor air system (DOAS). Several parameters including thermostat setting, passive solar design, and chiller operation control are considered as decision variables. Subsequently, the percentage of people dissatisfied (PPD) and annual building energy consumption is chosen as objective functions. Multi-objective optimization is employed to optimize the system with two objective functions. As the result, ANN performed a good correlation between decision variables and the objective function. Moreover, MOGA successfully provides several alternative possible design variables to achieve optimum system in terms of thermal comfort and annual energy consumption. In conclusion, the optimization that considers two objectives shows the best result regarding thermal comfort and energy consumption compared to base case design." @default.
- W2955111921 created "2019-07-12" @default.
- W2955111921 creator A5005529250 @default.
- W2955111921 creator A5016848868 @default.
- W2955111921 creator A5064024933 @default.
- W2955111921 creator A5069191778 @default.
- W2955111921 creator A5082978024 @default.
- W2955111921 creator A5084558611 @default.
- W2955111921 date "2019-10-01" @default.
- W2955111921 modified "2023-10-17" @default.
- W2955111921 title "Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm" @default.
- W2955111921 cites W1058662125 @default.
- W2955111921 cites W1868667351 @default.
- W2955111921 cites W1964527684 @default.
- W2955111921 cites W1972971274 @default.
- W2955111921 cites W1977596813 @default.
- W2955111921 cites W1983110499 @default.
- W2955111921 cites W1989475308 @default.
- W2955111921 cites W1995589013 @default.
- W2955111921 cites W2010837239 @default.
- W2955111921 cites W2012001344 @default.
- W2955111921 cites W2014674135 @default.
- W2955111921 cites W2017657413 @default.
- W2955111921 cites W2021095700 @default.
- W2955111921 cites W2031727416 @default.
- W2955111921 cites W2032632859 @default.
- W2955111921 cites W2041243828 @default.
- W2955111921 cites W2041701590 @default.
- W2955111921 cites W2042339730 @default.
- W2955111921 cites W2047025039 @default.
- W2955111921 cites W2068767497 @default.
- W2955111921 cites W2070464181 @default.
- W2955111921 cites W2074550200 @default.
- W2955111921 cites W2082104542 @default.
- W2955111921 cites W2083533844 @default.
- W2955111921 cites W2083974252 @default.
- W2955111921 cites W2084466438 @default.
- W2955111921 cites W2086865342 @default.
- W2955111921 cites W2114517291 @default.
- W2955111921 cites W2274499303 @default.
- W2955111921 cites W2314153399 @default.
- W2955111921 cites W2393011243 @default.
- W2955111921 cites W2513666948 @default.
- W2955111921 cites W2564577580 @default.
- W2955111921 doi "https://doi.org/10.1016/j.seta.2019.06.002" @default.
- W2955111921 hasPublicationYear "2019" @default.
- W2955111921 type Work @default.
- W2955111921 sameAs 2955111921 @default.
- W2955111921 citedByCount "95" @default.
- W2955111921 countsByYear W29551119212019 @default.
- W2955111921 countsByYear W29551119212020 @default.
- W2955111921 countsByYear W29551119212021 @default.
- W2955111921 countsByYear W29551119212022 @default.
- W2955111921 countsByYear W29551119212023 @default.
- W2955111921 crossrefType "journal-article" @default.
- W2955111921 hasAuthorship W2955111921A5005529250 @default.
- W2955111921 hasAuthorship W2955111921A5016848868 @default.
- W2955111921 hasAuthorship W2955111921A5064024933 @default.
- W2955111921 hasAuthorship W2955111921A5069191778 @default.
- W2955111921 hasAuthorship W2955111921A5082978024 @default.
- W2955111921 hasAuthorship W2955111921A5084558611 @default.
- W2955111921 hasConcept C103742991 @default.
- W2955111921 hasConcept C119599485 @default.
- W2955111921 hasConcept C119857082 @default.
- W2955111921 hasConcept C121332964 @default.
- W2955111921 hasConcept C122346748 @default.
- W2955111921 hasConcept C127413603 @default.
- W2955111921 hasConcept C133731056 @default.
- W2955111921 hasConcept C133913538 @default.
- W2955111921 hasConcept C154945302 @default.
- W2955111921 hasConcept C171146098 @default.
- W2955111921 hasConcept C187819001 @default.
- W2955111921 hasConcept C2780165032 @default.
- W2955111921 hasConcept C41008148 @default.
- W2955111921 hasConcept C44154836 @default.
- W2955111921 hasConcept C4638862 @default.
- W2955111921 hasConcept C50644808 @default.
- W2955111921 hasConcept C51176869 @default.
- W2955111921 hasConcept C78519656 @default.
- W2955111921 hasConcept C8880873 @default.
- W2955111921 hasConcept C97355855 @default.
- W2955111921 hasConceptScore W2955111921C103742991 @default.
- W2955111921 hasConceptScore W2955111921C119599485 @default.
- W2955111921 hasConceptScore W2955111921C119857082 @default.
- W2955111921 hasConceptScore W2955111921C121332964 @default.
- W2955111921 hasConceptScore W2955111921C122346748 @default.
- W2955111921 hasConceptScore W2955111921C127413603 @default.
- W2955111921 hasConceptScore W2955111921C133731056 @default.
- W2955111921 hasConceptScore W2955111921C133913538 @default.
- W2955111921 hasConceptScore W2955111921C154945302 @default.
- W2955111921 hasConceptScore W2955111921C171146098 @default.
- W2955111921 hasConceptScore W2955111921C187819001 @default.
- W2955111921 hasConceptScore W2955111921C2780165032 @default.
- W2955111921 hasConceptScore W2955111921C41008148 @default.
- W2955111921 hasConceptScore W2955111921C44154836 @default.
- W2955111921 hasConceptScore W2955111921C4638862 @default.
- W2955111921 hasConceptScore W2955111921C50644808 @default.
- W2955111921 hasConceptScore W2955111921C51176869 @default.