Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955121492> ?p ?o ?g. }
- W2955121492 endingPage "83411" @default.
- W2955121492 startingPage "83396" @default.
- W2955121492 abstract "Learning good-performing classifiers from data with easily separable classes is not usually a difficult task for most of the algorithms. However, problems affecting classifier performance may arise when samples from different classes share similar characteristics or are <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>overlapped</i> , since the boundaries of each class may not be clearly defined. In order to address this problem, the majority of existing works in the literature propose to either adapt well-known algorithms to reduce the negative impact of overlapping or modify the original data by introducing/removing features which decrease the overlapping region. However, these approaches may present some drawbacks: the changes in specific algorithms may not be useful for other methods and modifying the original data can produce variable results depending on data characteristics and the technique used later. An unexplored and interesting research line to deal with the overlapping phenomenon consists of decomposing the problem into several binary subproblems to reduce its complexity, diminishing the negative effects of overlapping. Based on this novel idea in the field of overlapping data, this paper proposes the usage of the <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>One-vs-One</i> ( <monospace xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>OVO</monospace> ) strategy to alleviate the presence of overlapping, without modifying existing algorithms or data conformations as suggested by previous works. To test the suitability of the <monospace xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>OVO</monospace> approach with overlapping data, and due to the lack of proposals in the specialized literature, this research also introduces a novel scheme to artificially induce overlapping in real-world datasets, which enables us to simulate different types and levels of overlapping among the classes. The results obtained show that the methods using the <monospace xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>OVO</monospace> achieve better performances when considering data with overlapped classes than those dealing with all classes at the same time." @default.
- W2955121492 created "2019-07-12" @default.
- W2955121492 creator A5021241636 @default.
- W2955121492 creator A5033363790 @default.
- W2955121492 creator A5054879396 @default.
- W2955121492 date "2019-01-01" @default.
- W2955121492 modified "2023-10-16" @default.
- W2955121492 title "Addressing the Overlapping Data Problem in Classification Using the One-vs-One Decomposition Strategy" @default.
- W2955121492 cites W102369970 @default.
- W2955121492 cites W1501918702 @default.
- W2955121492 cites W1561613409 @default.
- W2955121492 cites W1586851133 @default.
- W2955121492 cites W1670263352 @default.
- W2955121492 cites W1905705329 @default.
- W2955121492 cites W1964675540 @default.
- W2955121492 cites W2012243161 @default.
- W2955121492 cites W2014610539 @default.
- W2955121492 cites W2038705219 @default.
- W2955121492 cites W2051568872 @default.
- W2955121492 cites W2078192033 @default.
- W2955121492 cites W2083030684 @default.
- W2955121492 cites W2096381488 @default.
- W2955121492 cites W2111164709 @default.
- W2955121492 cites W2115879433 @default.
- W2955121492 cites W2146194630 @default.
- W2955121492 cites W2163952039 @default.
- W2955121492 cites W2226725405 @default.
- W2955121492 cites W2230508580 @default.
- W2955121492 cites W2303810353 @default.
- W2955121492 cites W2320075934 @default.
- W2955121492 cites W2321969621 @default.
- W2955121492 cites W2411912264 @default.
- W2955121492 cites W2554391432 @default.
- W2955121492 cites W2602100901 @default.
- W2955121492 cites W2606436201 @default.
- W2955121492 cites W2741602003 @default.
- W2955121492 cites W2760986417 @default.
- W2955121492 cites W2790397506 @default.
- W2955121492 cites W2794633256 @default.
- W2955121492 cites W2800788706 @default.
- W2955121492 cites W2903105746 @default.
- W2955121492 cites W2911512579 @default.
- W2955121492 cites W2917459525 @default.
- W2955121492 cites W2964111160 @default.
- W2955121492 cites W4244724761 @default.
- W2955121492 doi "https://doi.org/10.1109/access.2019.2925300" @default.
- W2955121492 hasPublicationYear "2019" @default.
- W2955121492 type Work @default.
- W2955121492 sameAs 2955121492 @default.
- W2955121492 citedByCount "28" @default.
- W2955121492 countsByYear W29551214922020 @default.
- W2955121492 countsByYear W29551214922021 @default.
- W2955121492 countsByYear W29551214922022 @default.
- W2955121492 countsByYear W29551214922023 @default.
- W2955121492 crossrefType "journal-article" @default.
- W2955121492 hasAuthorship W2955121492A5021241636 @default.
- W2955121492 hasAuthorship W2955121492A5033363790 @default.
- W2955121492 hasAuthorship W2955121492A5054879396 @default.
- W2955121492 hasBestOaLocation W29551214921 @default.
- W2955121492 hasConcept C11413529 @default.
- W2955121492 hasConcept C119857082 @default.
- W2955121492 hasConcept C124101348 @default.
- W2955121492 hasConcept C134306372 @default.
- W2955121492 hasConcept C154945302 @default.
- W2955121492 hasConcept C202444582 @default.
- W2955121492 hasConcept C2777212361 @default.
- W2955121492 hasConcept C33923547 @default.
- W2955121492 hasConcept C41008148 @default.
- W2955121492 hasConcept C70710897 @default.
- W2955121492 hasConcept C80444323 @default.
- W2955121492 hasConcept C95623464 @default.
- W2955121492 hasConcept C9652623 @default.
- W2955121492 hasConceptScore W2955121492C11413529 @default.
- W2955121492 hasConceptScore W2955121492C119857082 @default.
- W2955121492 hasConceptScore W2955121492C124101348 @default.
- W2955121492 hasConceptScore W2955121492C134306372 @default.
- W2955121492 hasConceptScore W2955121492C154945302 @default.
- W2955121492 hasConceptScore W2955121492C202444582 @default.
- W2955121492 hasConceptScore W2955121492C2777212361 @default.
- W2955121492 hasConceptScore W2955121492C33923547 @default.
- W2955121492 hasConceptScore W2955121492C41008148 @default.
- W2955121492 hasConceptScore W2955121492C70710897 @default.
- W2955121492 hasConceptScore W2955121492C80444323 @default.
- W2955121492 hasConceptScore W2955121492C95623464 @default.
- W2955121492 hasConceptScore W2955121492C9652623 @default.
- W2955121492 hasLocation W29551214921 @default.
- W2955121492 hasLocation W29551214922 @default.
- W2955121492 hasOpenAccess W2955121492 @default.
- W2955121492 hasPrimaryLocation W29551214921 @default.
- W2955121492 hasRelatedWork W2556319748 @default.
- W2955121492 hasRelatedWork W2961085424 @default.
- W2955121492 hasRelatedWork W3046775127 @default.
- W2955121492 hasRelatedWork W3170094116 @default.
- W2955121492 hasRelatedWork W3200179079 @default.
- W2955121492 hasRelatedWork W4285260836 @default.
- W2955121492 hasRelatedWork W4286629047 @default.
- W2955121492 hasRelatedWork W4306321456 @default.
- W2955121492 hasRelatedWork W4306674287 @default.