Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955138922> ?p ?o ?g. }
- W2955138922 endingPage "7482" @default.
- W2955138922 startingPage "7471" @default.
- W2955138922 abstract "We report a self-consistent method to translate amino acid sequences into audible sound, use the representation in the musical space to train a neural network, and then apply it to generate protein designs using artificial intelligence (AI). The sonification method proposed here uses the normal mode vibrations of the amino acid building blocks of proteins to compute an audible representation of each of the 20 natural amino acids, which is fully defined by the overlay of its respective natural vibrations. The vibrational frequencies are transposed to the audible spectrum following the musical concept of transpositional equivalence, playing or writing music in a way that makes it sound higher or lower in pitch while retaining the relationships between tones or chords played. This transposition method ensures that the relative values of the vibrational frequencies within each amino acid and among different amino acids are retained. The characteristic frequency spectrum and sound associated with each of the amino acids represents a type of musical scale that consists of 20 tones, the amino acid scale. To create a playable instrument, each tone associated with the amino acids is assigned to a specific key on a piano roll, which allows us to map the sequence of amino acids in proteins into a musical score. To reflect higher-order structural details of proteins, the volume and duration of the notes associated with each amino acid are defined by the secondary structure of proteins, computed using DSSP and thereby introducing musical rhythm. We then train a recurrent neural network based on a large set of musical scores generated by this sonification method and use AI to generate musical compositions, capturing the innate relationships between amino acid sequence and protein structure. We then translate the de novo musical data generated by AI into protein sequences, thereby obtaining de novo protein designs that feature specific design characteristics. We illustrate the approach in several examples that reflect the sonification of protein sequences, including multihour audible representations of natural proteins and protein-based musical compositions solely generated by AI. The approach proposed here may provide an avenue for understanding sequence patterns, variations, and mutations and offers an outreach mechanism to explain the significance of protein sequences. The method may also offer insight into protein folding and understanding the context of the amino acid sequence in defining the secondary and higher-order folded structure of proteins and could hence be used to detect the effects of mutations through sound." @default.
- W2955138922 created "2019-07-12" @default.
- W2955138922 creator A5006754529 @default.
- W2955138922 creator A5011814994 @default.
- W2955138922 creator A5025854647 @default.
- W2955138922 creator A5031081899 @default.
- W2955138922 date "2019-06-26" @default.
- W2955138922 modified "2023-09-27" @default.
- W2955138922 title "A Self-Consistent Sonification Method to Translate Amino Acid Sequences into Musical Compositions and Application in Protein Design Using Artificial Intelligence" @default.
- W2955138922 cites W1607931568 @default.
- W2955138922 cites W1965209879 @default.
- W2955138922 cites W1972068068 @default.
- W2955138922 cites W1999906506 @default.
- W2955138922 cites W2008708467 @default.
- W2955138922 cites W2010675647 @default.
- W2955138922 cites W2023658573 @default.
- W2955138922 cites W2025672909 @default.
- W2955138922 cites W2041121121 @default.
- W2955138922 cites W2041281044 @default.
- W2955138922 cites W2053347927 @default.
- W2955138922 cites W2055043387 @default.
- W2955138922 cites W2061259599 @default.
- W2955138922 cites W2063304073 @default.
- W2955138922 cites W2086250480 @default.
- W2955138922 cites W2103863014 @default.
- W2955138922 cites W2107302205 @default.
- W2955138922 cites W2119780277 @default.
- W2955138922 cites W2123442640 @default.
- W2955138922 cites W2126103104 @default.
- W2955138922 cites W2144634308 @default.
- W2955138922 cites W2147173506 @default.
- W2955138922 cites W2160564267 @default.
- W2955138922 cites W2166712553 @default.
- W2955138922 cites W2168527884 @default.
- W2955138922 cites W2327527452 @default.
- W2955138922 cites W2329066638 @default.
- W2955138922 cites W2399216786 @default.
- W2955138922 cites W2464070928 @default.
- W2955138922 cites W2509875196 @default.
- W2955138922 cites W2524427739 @default.
- W2955138922 cites W2746340333 @default.
- W2955138922 cites W2766966300 @default.
- W2955138922 cites W2785273668 @default.
- W2955138922 cites W2794223520 @default.
- W2955138922 cites W2794367096 @default.
- W2955138922 cites W2883482411 @default.
- W2955138922 cites W2889498145 @default.
- W2955138922 cites W2889792685 @default.
- W2955138922 cites W2939610444 @default.
- W2955138922 cites W3101721510 @default.
- W2955138922 cites W1548848053 @default.
- W2955138922 doi "https://doi.org/10.1021/acsnano.9b02180" @default.
- W2955138922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31240912" @default.
- W2955138922 hasPublicationYear "2019" @default.
- W2955138922 type Work @default.
- W2955138922 sameAs 2955138922 @default.
- W2955138922 citedByCount "77" @default.
- W2955138922 countsByYear W29551389222019 @default.
- W2955138922 countsByYear W29551389222020 @default.
- W2955138922 countsByYear W29551389222021 @default.
- W2955138922 countsByYear W29551389222022 @default.
- W2955138922 countsByYear W29551389222023 @default.
- W2955138922 crossrefType "journal-article" @default.
- W2955138922 hasAuthorship W2955138922A5006754529 @default.
- W2955138922 hasAuthorship W2955138922A5011814994 @default.
- W2955138922 hasAuthorship W2955138922A5025854647 @default.
- W2955138922 hasAuthorship W2955138922A5031081899 @default.
- W2955138922 hasConcept C121332964 @default.
- W2955138922 hasConcept C124086623 @default.
- W2955138922 hasConcept C124952713 @default.
- W2955138922 hasConcept C142362112 @default.
- W2955138922 hasConcept C154945302 @default.
- W2955138922 hasConcept C17744445 @default.
- W2955138922 hasConcept C186060115 @default.
- W2955138922 hasConcept C199539241 @default.
- W2955138922 hasConcept C24890656 @default.
- W2955138922 hasConcept C2776359362 @default.
- W2955138922 hasConcept C2780583480 @default.
- W2955138922 hasConcept C2780646970 @default.
- W2955138922 hasConcept C28490314 @default.
- W2955138922 hasConcept C41008148 @default.
- W2955138922 hasConcept C50644808 @default.
- W2955138922 hasConcept C515207424 @default.
- W2955138922 hasConcept C55493867 @default.
- W2955138922 hasConcept C86803240 @default.
- W2955138922 hasConcept C94625758 @default.
- W2955138922 hasConceptScore W2955138922C121332964 @default.
- W2955138922 hasConceptScore W2955138922C124086623 @default.
- W2955138922 hasConceptScore W2955138922C124952713 @default.
- W2955138922 hasConceptScore W2955138922C142362112 @default.
- W2955138922 hasConceptScore W2955138922C154945302 @default.
- W2955138922 hasConceptScore W2955138922C17744445 @default.
- W2955138922 hasConceptScore W2955138922C186060115 @default.
- W2955138922 hasConceptScore W2955138922C199539241 @default.
- W2955138922 hasConceptScore W2955138922C24890656 @default.
- W2955138922 hasConceptScore W2955138922C2776359362 @default.
- W2955138922 hasConceptScore W2955138922C2780583480 @default.
- W2955138922 hasConceptScore W2955138922C2780646970 @default.