Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955143149> ?p ?o ?g. }
- W2955143149 endingPage "343" @default.
- W2955143149 startingPage "316" @default.
- W2955143149 abstract "We have experimentally determined the diffusivity of water in a representative lunar basaltic liquid composition (LG) and in an iron-free analog of a basaltic liquid (AD) at the low water concentrations and low oxygen fugacities (fO2) relevant to the eruption of lunar basalts. Experiments were conducted at 1 atm and 1350 °C over a range of pH2/pH2O from near zero to ∼10 and a range in fO2 spanning ∼9 orders of magnitude (from 2.2 log units below the iron-wüstite buffer, IW−2.2, to IW+6.7). The water concentrations measured in our quenched experimental glasses by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) vary from a few ppm to ∼430 ppm. Water concentration gradients in the majority of our AD experiments are well described by models in which the diffusivity of water (Dwater∗) has a constant value of ∼2 × 10−10 m2/s, while our LG results indicate that Dwater∗ in LG melt has a constant value of ∼6 × 10−10 m2/s under the conditions of our experiments. Water concentration gradients in hydration and dehydration experiments that were run simultaneously in H2/CO2 gas mixtures are well described by the same Dwater∗, and water concentrations measured near the melt-vapor interfaces of these experiment pairs are approximately the same. These observations strongly support an equilibrium boundary condition for our experiments containing >70 ppm H2O. However, dehydration experiments into nominally anhydrous CO2, N2, and CO/CO2 gas mixtures leave some scope for the importance of kinetics during dehydration of melts containing less than a few 10′s of ppm H2O. Comparison of our results with the modified speciation model (Ni et al., 2013) in which both molecular water and hydroxyl are allowed to diffuse suggests that we have resolved the diffusivity of hydroxyl (DOH) in AD and LG melts. Our results support a positive correlation between DOH and melt depolymerization. Best-fit values of Dwater∗ for our LG experiments vary within a factor of ∼2 over a range of pH2/pH2O from 0.007 to 9.7 and a range of logfO2 from IW−2.2 to IW+4.9. The relative insensitivity of our best-fit values of Dwater∗ to variations in pH2 suggests that H2 diffusion did not control the rate of degassing of H-bearing species from the lunar glasses of Saal et al. (2008); however, we cannot rule out a role for molecular H2 diffusion under lower-temperature and/or higher-pressure conditions than explored in our experiments. The value of Dwater∗ chosen by Saal et al. (2008) for modeling the diffusive degassing of the lunar volcanic glasses is within a factor of ∼2 of our measured value in LG melt at 1350 °C. By coupling our LG results at 1350 °C with an activation energy of 220 kJ/mol (Zhang et al., 2017), we obtain the following Arrhenius relationship, which can be used to model syneruptive diffusive water loss from lunar melt beads: Dwater∗(m2/s)=7.2×10-3exp-2.6×104T(K)." @default.
- W2955143149 created "2019-07-12" @default.
- W2955143149 creator A5019467342 @default.
- W2955143149 creator A5026264194 @default.
- W2955143149 creator A5037138772 @default.
- W2955143149 creator A5039613093 @default.
- W2955143149 creator A5058110166 @default.
- W2955143149 creator A5069772646 @default.
- W2955143149 creator A5077499845 @default.
- W2955143149 date "2019-08-01" @default.
- W2955143149 modified "2023-10-15" @default.
- W2955143149 title "Effects of pH2O, pH2 and fO2 on the diffusion of H-bearing species in lunar basaltic liquid and an iron-free basaltic analog at 1 atm" @default.
- W2955143149 cites W1965598595 @default.
- W2955143149 cites W1967180346 @default.
- W2955143149 cites W1967226029 @default.
- W2955143149 cites W1969649594 @default.
- W2955143149 cites W1972558712 @default.
- W2955143149 cites W1973746992 @default.
- W2955143149 cites W1975215560 @default.
- W2955143149 cites W1975629210 @default.
- W2955143149 cites W1977520137 @default.
- W2955143149 cites W1978393424 @default.
- W2955143149 cites W1978850296 @default.
- W2955143149 cites W1983324344 @default.
- W2955143149 cites W1985139759 @default.
- W2955143149 cites W1989857282 @default.
- W2955143149 cites W1994599443 @default.
- W2955143149 cites W1996000677 @default.
- W2955143149 cites W2005809052 @default.
- W2955143149 cites W2019732952 @default.
- W2955143149 cites W2021372205 @default.
- W2955143149 cites W2021522593 @default.
- W2955143149 cites W2022006623 @default.
- W2955143149 cites W2022042024 @default.
- W2955143149 cites W2022196298 @default.
- W2955143149 cites W2024337591 @default.
- W2955143149 cites W2028887347 @default.
- W2955143149 cites W2045172266 @default.
- W2955143149 cites W2046090053 @default.
- W2955143149 cites W2049693080 @default.
- W2955143149 cites W2050623549 @default.
- W2955143149 cites W2056910670 @default.
- W2955143149 cites W2058075048 @default.
- W2955143149 cites W2065106545 @default.
- W2955143149 cites W2067432880 @default.
- W2955143149 cites W2071394734 @default.
- W2955143149 cites W2074054008 @default.
- W2955143149 cites W2078154529 @default.
- W2955143149 cites W2083617746 @default.
- W2955143149 cites W2086285344 @default.
- W2955143149 cites W2087748277 @default.
- W2955143149 cites W2091515974 @default.
- W2955143149 cites W2093261532 @default.
- W2955143149 cites W2095875417 @default.
- W2955143149 cites W2101045622 @default.
- W2955143149 cites W2117169821 @default.
- W2955143149 cites W2118722869 @default.
- W2955143149 cites W2123584002 @default.
- W2955143149 cites W2136572031 @default.
- W2955143149 cites W2137414701 @default.
- W2955143149 cites W2138687146 @default.
- W2955143149 cites W2140101655 @default.
- W2955143149 cites W2140944900 @default.
- W2955143149 cites W2156921334 @default.
- W2955143149 cites W2159139211 @default.
- W2955143149 cites W2161481750 @default.
- W2955143149 cites W2163927442 @default.
- W2955143149 cites W2169659075 @default.
- W2955143149 cites W2183426315 @default.
- W2955143149 cites W2193550249 @default.
- W2955143149 cites W2306787333 @default.
- W2955143149 cites W2334964922 @default.
- W2955143149 cites W2486003795 @default.
- W2955143149 cites W2561631246 @default.
- W2955143149 cites W2565705435 @default.
- W2955143149 cites W2599368048 @default.
- W2955143149 cites W2737200565 @default.
- W2955143149 cites W2757344586 @default.
- W2955143149 cites W2762397865 @default.
- W2955143149 cites W2763343808 @default.
- W2955143149 cites W2895127060 @default.
- W2955143149 cites W3013022097 @default.
- W2955143149 cites W4233124127 @default.
- W2955143149 doi "https://doi.org/10.1016/j.gca.2019.05.033" @default.
- W2955143149 hasPublicationYear "2019" @default.
- W2955143149 type Work @default.
- W2955143149 sameAs 2955143149 @default.
- W2955143149 citedByCount "7" @default.
- W2955143149 countsByYear W29551431492019 @default.
- W2955143149 countsByYear W29551431492020 @default.
- W2955143149 countsByYear W29551431492022 @default.
- W2955143149 countsByYear W29551431492023 @default.
- W2955143149 crossrefType "journal-article" @default.
- W2955143149 hasAuthorship W2955143149A5019467342 @default.
- W2955143149 hasAuthorship W2955143149A5026264194 @default.
- W2955143149 hasAuthorship W2955143149A5037138772 @default.
- W2955143149 hasAuthorship W2955143149A5039613093 @default.
- W2955143149 hasAuthorship W2955143149A5058110166 @default.