Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955147859> ?p ?o ?g. }
- W2955147859 endingPage "1601" @default.
- W2955147859 startingPage "1592" @default.
- W2955147859 abstract "The goal of person reidentification (Re-ID) is to identify a given pedestrian from a network of nonoverlapping surveillance cameras. Most existing works follow the supervised learning paradigm which requires pairwise labeled training data for each pair of cameras. However, this limits their scalability to real-world applications where abundant unlabeled data are available. To address this issue, we propose a multi-feature fusion with adaptive graph learning model for unsupervised Re-ID. Our model aims to negotiate comprehensive assessment on the consistent graph structure of pedestrians with the help of special information of feature descriptors. Specifically, we incorporate multi-feature dictionary learning and adaptive multi-feature graph learning into a unified learning model such that the learned dictionaries are discriminative and the subsequent graph structure learning is accurate. An alternating optimization algorithm with proved convergence is developed to solve the final optimization objective. Extensive experiments on four benchmark data sets demonstrate the superiority and effectiveness of the proposed method." @default.
- W2955147859 created "2019-07-12" @default.
- W2955147859 creator A5000232398 @default.
- W2955147859 creator A5003222421 @default.
- W2955147859 creator A5005421447 @default.
- W2955147859 creator A5018193643 @default.
- W2955147859 creator A5024562387 @default.
- W2955147859 creator A5034967388 @default.
- W2955147859 date "2020-05-01" @default.
- W2955147859 modified "2023-10-18" @default.
- W2955147859 title "Person Reidentification via Multi-Feature Fusion With Adaptive Graph Learning" @default.
- W2955147859 cites W166429404 @default.
- W2955147859 cites W1907775068 @default.
- W2955147859 cites W1920259731 @default.
- W2955147859 cites W1949591461 @default.
- W2955147859 cites W1963702692 @default.
- W2955147859 cites W1979260620 @default.
- W2955147859 cites W1980458770 @default.
- W2955147859 cites W1982925187 @default.
- W2955147859 cites W2009907187 @default.
- W2955147859 cites W2022469758 @default.
- W2955147859 cites W2030558520 @default.
- W2955147859 cites W2046835352 @default.
- W2955147859 cites W2062677035 @default.
- W2955147859 cites W2068042582 @default.
- W2955147859 cites W2093279820 @default.
- W2955147859 cites W2125447566 @default.
- W2955147859 cites W2126791727 @default.
- W2955147859 cites W2157598322 @default.
- W2955147859 cites W2327827989 @default.
- W2955147859 cites W2342611082 @default.
- W2955147859 cites W2441160157 @default.
- W2955147859 cites W2467139031 @default.
- W2955147859 cites W2475284720 @default.
- W2955147859 cites W2483081449 @default.
- W2955147859 cites W2511556322 @default.
- W2955147859 cites W2514638911 @default.
- W2955147859 cites W2515904052 @default.
- W2955147859 cites W2520831962 @default.
- W2955147859 cites W2524097181 @default.
- W2955147859 cites W2548624619 @default.
- W2955147859 cites W2606011186 @default.
- W2955147859 cites W2606165952 @default.
- W2955147859 cites W2740442402 @default.
- W2955147859 cites W2752197020 @default.
- W2955147859 cites W2752880541 @default.
- W2955147859 cites W2765995039 @default.
- W2955147859 cites W2766211058 @default.
- W2955147859 cites W2778775889 @default.
- W2955147859 cites W2791716598 @default.
- W2955147859 cites W2802335815 @default.
- W2955147859 cites W2888159112 @default.
- W2955147859 cites W2897790770 @default.
- W2955147859 cites W2900298061 @default.
- W2955147859 cites W2963557071 @default.
- W2955147859 cites W2963721283 @default.
- W2955147859 cites W2963852441 @default.
- W2955147859 cites W2964006613 @default.
- W2955147859 cites W370501591 @default.
- W2955147859 doi "https://doi.org/10.1109/tnnls.2019.2920905" @default.
- W2955147859 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31283511" @default.
- W2955147859 hasPublicationYear "2020" @default.
- W2955147859 type Work @default.
- W2955147859 sameAs 2955147859 @default.
- W2955147859 citedByCount "86" @default.
- W2955147859 countsByYear W29551478592019 @default.
- W2955147859 countsByYear W29551478592020 @default.
- W2955147859 countsByYear W29551478592021 @default.
- W2955147859 countsByYear W29551478592022 @default.
- W2955147859 countsByYear W29551478592023 @default.
- W2955147859 crossrefType "journal-article" @default.
- W2955147859 hasAuthorship W2955147859A5000232398 @default.
- W2955147859 hasAuthorship W2955147859A5003222421 @default.
- W2955147859 hasAuthorship W2955147859A5005421447 @default.
- W2955147859 hasAuthorship W2955147859A5018193643 @default.
- W2955147859 hasAuthorship W2955147859A5024562387 @default.
- W2955147859 hasAuthorship W2955147859A5034967388 @default.
- W2955147859 hasConcept C119857082 @default.
- W2955147859 hasConcept C124101348 @default.
- W2955147859 hasConcept C132525143 @default.
- W2955147859 hasConcept C13280743 @default.
- W2955147859 hasConcept C138885662 @default.
- W2955147859 hasConcept C153180895 @default.
- W2955147859 hasConcept C154945302 @default.
- W2955147859 hasConcept C184898388 @default.
- W2955147859 hasConcept C185798385 @default.
- W2955147859 hasConcept C205649164 @default.
- W2955147859 hasConcept C2776401178 @default.
- W2955147859 hasConcept C41008148 @default.
- W2955147859 hasConcept C41895202 @default.
- W2955147859 hasConcept C48044578 @default.
- W2955147859 hasConcept C59404180 @default.
- W2955147859 hasConcept C77088390 @default.
- W2955147859 hasConcept C8038995 @default.
- W2955147859 hasConcept C80444323 @default.
- W2955147859 hasConcept C97931131 @default.
- W2955147859 hasConceptScore W2955147859C119857082 @default.
- W2955147859 hasConceptScore W2955147859C124101348 @default.