Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955174913> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2955174913 abstract "Machine learning has been used in various fields with thousands of applications. Extreme learning machine (ELM), which is the most recently developed machine learning algorithm, has become increasingly popular for its good generalization ability. However, it has been relatively less applied to the domain of social media. Support Vector Machine (SVM), another popular learning-based algorithm, has been applied for sentiment classification of social media text data and has obtained good results. This paper investigates and compares the capabilities of these two learning-based methods in the field of sentiment classification of social media. The results indicate that SVM can obtain good performance for analyzing small datasets, while for large datasets, ELM performs better than SVM. This research also indicates that ELM has the potential application in the domain of social media analysis." @default.
- W2955174913 created "2019-07-12" @default.
- W2955174913 creator A5019731119 @default.
- W2955174913 creator A5049506273 @default.
- W2955174913 creator A5074934997 @default.
- W2955174913 creator A5081035598 @default.
- W2955174913 date "2019-06-30" @default.
- W2955174913 modified "2023-10-05" @default.
- W2955174913 title "Comparing ELM with SVM in the Field of Sentiment Classification of Social Media Text Data" @default.
- W2955174913 cites W1520795727 @default.
- W2955174913 cites W2022887050 @default.
- W2955174913 cites W2026439047 @default.
- W2955174913 cites W2032170121 @default.
- W2955174913 cites W2056137745 @default.
- W2955174913 cites W2065398998 @default.
- W2955174913 cites W2078365611 @default.
- W2955174913 cites W2138260443 @default.
- W2955174913 cites W2153635508 @default.
- W2955174913 cites W2156741031 @default.
- W2955174913 cites W2584852760 @default.
- W2955174913 cites W376370578 @default.
- W2955174913 cites W4229561215 @default.
- W2955174913 doi "https://doi.org/10.1007/978-3-030-23307-5_36" @default.
- W2955174913 hasPublicationYear "2019" @default.
- W2955174913 type Work @default.
- W2955174913 sameAs 2955174913 @default.
- W2955174913 citedByCount "0" @default.
- W2955174913 crossrefType "book-chapter" @default.
- W2955174913 hasAuthorship W2955174913A5019731119 @default.
- W2955174913 hasAuthorship W2955174913A5049506273 @default.
- W2955174913 hasAuthorship W2955174913A5074934997 @default.
- W2955174913 hasAuthorship W2955174913A5081035598 @default.
- W2955174913 hasBestOaLocation W29551749132 @default.
- W2955174913 hasConcept C12267149 @default.
- W2955174913 hasConcept C136764020 @default.
- W2955174913 hasConcept C153180895 @default.
- W2955174913 hasConcept C154945302 @default.
- W2955174913 hasConcept C202444582 @default.
- W2955174913 hasConcept C33923547 @default.
- W2955174913 hasConcept C41008148 @default.
- W2955174913 hasConcept C518677369 @default.
- W2955174913 hasConcept C66402592 @default.
- W2955174913 hasConcept C9652623 @default.
- W2955174913 hasConceptScore W2955174913C12267149 @default.
- W2955174913 hasConceptScore W2955174913C136764020 @default.
- W2955174913 hasConceptScore W2955174913C153180895 @default.
- W2955174913 hasConceptScore W2955174913C154945302 @default.
- W2955174913 hasConceptScore W2955174913C202444582 @default.
- W2955174913 hasConceptScore W2955174913C33923547 @default.
- W2955174913 hasConceptScore W2955174913C41008148 @default.
- W2955174913 hasConceptScore W2955174913C518677369 @default.
- W2955174913 hasConceptScore W2955174913C66402592 @default.
- W2955174913 hasConceptScore W2955174913C9652623 @default.
- W2955174913 hasLocation W29551749131 @default.
- W2955174913 hasLocation W29551749132 @default.
- W2955174913 hasOpenAccess W2955174913 @default.
- W2955174913 hasPrimaryLocation W29551749131 @default.
- W2955174913 hasRelatedWork W2438765327 @default.
- W2955174913 hasRelatedWork W2548633793 @default.
- W2955174913 hasRelatedWork W2596247554 @default.
- W2955174913 hasRelatedWork W2748952813 @default.
- W2955174913 hasRelatedWork W2941935829 @default.
- W2955174913 hasRelatedWork W3013279174 @default.
- W2955174913 hasRelatedWork W3132372214 @default.
- W2955174913 hasRelatedWork W4213023620 @default.
- W2955174913 hasRelatedWork W4301373556 @default.
- W2955174913 hasRelatedWork W4317653575 @default.
- W2955174913 isParatext "false" @default.
- W2955174913 isRetracted "false" @default.
- W2955174913 magId "2955174913" @default.
- W2955174913 workType "book-chapter" @default.