Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955183992> ?p ?o ?g. }
- W2955183992 endingPage "104973" @default.
- W2955183992 startingPage "104973" @default.
- W2955183992 abstract "Nanoliquids are dilute suspensions of nanoparticles with at least one of their principal dimensions smaller than 100 nm. Form literature, nanoliquids have been found to possess increased thermos-physical characteristics like thermal diffusivity, thermal conductivity, convective heat transport coefficients and viscosity associated to those of continuous phase liquids foe example oil, ethylene glycol and water. Nanoliquids have novel characteristics that make them possibly beneficial in numerous applications in heat transport like fuel cells, microelectronics, hybrid-powered engines, pharmaceutical processes, domestic refrigerator, engine cooling thermal management, chiller and heat exchanger. The above applications of nanofluids/hybrid nanofluids insist the researchers and engineers to develop new methodologies and technique in the field of heat transport. Therefore, we have considered mixed convective flow hybrid nanomaterial over a convectively heated surface of disk. Flow nature is discussed due to stretchable rotating surface of disk. Applied magnetic field is accounted. Ohmic heating and dissipation effects are utilized in the modeling of energy expression. Total entropy rate is calculated. Suitable transformation leads to ordinary differential equations. Shooting method is implemented for numerical outcomes. Comparative analysis is made for the present result with published ones. The effects of key parameters like magnetic parameter, mixed convection variable and Eckert and Biot numbers on the dimensionless velocity, surface drag force, temperature, (heat transfer rate) Nusselt number and entropy rate are discussed in detail and presented graphically. Furthermore, the outcomes demonstrate that velocity of liquid particles decline against magnetic parameter. Temperature and associated layer upsurge versus magnetic parameter and Eckert number. Skin friction coefficient (drag force) improves through higher values of stretching and magnetic variables. Heat transfer rate is more for higher Eckert number and magnetic parameter. Entropy rate is also enhances against Eckert number and Brickman number. Magnitude of surface drag force increases for higher values of stretching and magnetic variables. Magnitude of heat transfer rate is more when magnetic variable and Eckert number attain the maximum values. Brinkman number is used to decrease the entropy rate. Furthermore, velocity and temperature show contrast behavior versus magnetic parameter i.e., velocity of fluid particles decreases." @default.
- W2955183992 created "2019-07-12" @default.
- W2955183992 creator A5013308588 @default.
- W2955183992 creator A5032986343 @default.
- W2955183992 creator A5063182217 @default.
- W2955183992 creator A5068730007 @default.
- W2955183992 date "2019-10-01" @default.
- W2955183992 modified "2023-09-23" @default.
- W2955183992 title "Modeling and computational analysis of hybrid class nanomaterials subject to entropy generation" @default.
- W2955183992 cites W1966396994 @default.
- W2955183992 cites W1986557648 @default.
- W2955183992 cites W1991252548 @default.
- W2955183992 cites W2029993280 @default.
- W2955183992 cites W2040358967 @default.
- W2955183992 cites W2055292862 @default.
- W2955183992 cites W2055656906 @default.
- W2955183992 cites W2059487143 @default.
- W2955183992 cites W2060543310 @default.
- W2955183992 cites W2071069933 @default.
- W2955183992 cites W2083191258 @default.
- W2955183992 cites W2133599163 @default.
- W2955183992 cites W2316978293 @default.
- W2955183992 cites W2343014201 @default.
- W2955183992 cites W2344652846 @default.
- W2955183992 cites W2467951202 @default.
- W2955183992 cites W2493716187 @default.
- W2955183992 cites W2509188836 @default.
- W2955183992 cites W2514488900 @default.
- W2955183992 cites W2522380928 @default.
- W2955183992 cites W2533205379 @default.
- W2955183992 cites W2551137952 @default.
- W2955183992 cites W2581023022 @default.
- W2955183992 cites W2581927141 @default.
- W2955183992 cites W2586350318 @default.
- W2955183992 cites W2587910919 @default.
- W2955183992 cites W2594584950 @default.
- W2955183992 cites W2595895783 @default.
- W2955183992 cites W2616827682 @default.
- W2955183992 cites W2618605389 @default.
- W2955183992 cites W2622951986 @default.
- W2955183992 cites W2694718225 @default.
- W2955183992 cites W2725168057 @default.
- W2955183992 cites W2726634342 @default.
- W2955183992 cites W2756328965 @default.
- W2955183992 cites W2765212615 @default.
- W2955183992 cites W2770749360 @default.
- W2955183992 cites W2779900175 @default.
- W2955183992 cites W2782548252 @default.
- W2955183992 cites W2789537255 @default.
- W2955183992 cites W2791199725 @default.
- W2955183992 cites W2792103218 @default.
- W2955183992 cites W2808016370 @default.
- W2955183992 cites W2809862807 @default.
- W2955183992 cites W2883702107 @default.
- W2955183992 cites W2894760243 @default.
- W2955183992 cites W2897790570 @default.
- W2955183992 cites W2901496711 @default.
- W2955183992 cites W2903785603 @default.
- W2955183992 cites W2909346977 @default.
- W2955183992 cites W2914088820 @default.
- W2955183992 cites W2914691996 @default.
- W2955183992 cites W2941594746 @default.
- W2955183992 cites W2942509252 @default.
- W2955183992 cites W2945427421 @default.
- W2955183992 cites W2946953366 @default.
- W2955183992 cites W3143464661 @default.
- W2955183992 cites W4361755730 @default.
- W2955183992 doi "https://doi.org/10.1016/j.cmpb.2019.07.001" @default.
- W2955183992 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31443855" @default.
- W2955183992 hasPublicationYear "2019" @default.
- W2955183992 type Work @default.
- W2955183992 sameAs 2955183992 @default.
- W2955183992 citedByCount "92" @default.
- W2955183992 countsByYear W29551839922019 @default.
- W2955183992 countsByYear W29551839922020 @default.
- W2955183992 countsByYear W29551839922021 @default.
- W2955183992 countsByYear W29551839922022 @default.
- W2955183992 countsByYear W29551839922023 @default.
- W2955183992 crossrefType "journal-article" @default.
- W2955183992 hasAuthorship W2955183992A5013308588 @default.
- W2955183992 hasAuthorship W2955183992A5032986343 @default.
- W2955183992 hasAuthorship W2955183992A5063182217 @default.
- W2955183992 hasAuthorship W2955183992A5068730007 @default.
- W2955183992 hasConcept C115341296 @default.
- W2955183992 hasConcept C121332964 @default.
- W2955183992 hasConcept C130230704 @default.
- W2955183992 hasConcept C159985019 @default.
- W2955183992 hasConcept C182748727 @default.
- W2955183992 hasConcept C192562407 @default.
- W2955183992 hasConcept C196558001 @default.
- W2955183992 hasConcept C21946209 @default.
- W2955183992 hasConcept C37668627 @default.
- W2955183992 hasConcept C47376073 @default.
- W2955183992 hasConcept C50517652 @default.
- W2955183992 hasConcept C57879066 @default.
- W2955183992 hasConcept C97346530 @default.
- W2955183992 hasConcept C97355855 @default.
- W2955183992 hasConceptScore W2955183992C115341296 @default.