Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955184057> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2955184057 endingPage "101" @default.
- W2955184057 startingPage "93" @default.
- W2955184057 abstract "The segmentation of blood vessels in medical images has been heavily studied, given its impact in several clinical practices. Deep Learning methods have been applied to supervised segmentation of blood vessels, mainly the retinal ones due to the availability of manual annotations. Despite their success, they typically minimize the Binary Cross Entropy loss, which does not penalize topological mistakes. These errors are relevant in graph-like structures such as blood vessel trees, as a missing segment or an inadequate merging or splitting of branches, may severely change the topology of the network and put at risk the extraction of vessel pathways and their characterization. In this paper, we propose an end-to-end network design comprising a cascade of a typical segmentation network and a Variational Auto-Encoder which, by learning a rich but compact latent space, is able to correct many topological incoherences. Our experiments in three of the most commonly used retinal databases, DRIVE, STARE, and CHASEDB1, show that the proposed model effectively learns representations inducing better segmentations in terms of topology, without hurting the usual pixel-wise metrics. The implementation is available at https://github.com/rjtaraujo/dvae-refiner ." @default.
- W2955184057 created "2019-07-12" @default.
- W2955184057 creator A5013827007 @default.
- W2955184057 creator A5024451344 @default.
- W2955184057 creator A5081835547 @default.
- W2955184057 date "2019-01-01" @default.
- W2955184057 modified "2023-10-13" @default.
- W2955184057 title "A Deep Learning Design for Improving Topology Coherence in Blood Vessel Segmentation" @default.
- W2955184057 cites W1901129140 @default.
- W2955184057 cites W2072130234 @default.
- W2955184057 cites W2145305441 @default.
- W2955184057 cites W2150769593 @default.
- W2955184057 cites W2155226776 @default.
- W2955184057 cites W2177899970 @default.
- W2955184057 cites W2526499595 @default.
- W2955184057 cites W2890285265 @default.
- W2955184057 cites W2963270775 @default.
- W2955184057 cites W2963351448 @default.
- W2955184057 cites W3098411051 @default.
- W2955184057 doi "https://doi.org/10.1007/978-3-030-32239-7_11" @default.
- W2955184057 hasPublicationYear "2019" @default.
- W2955184057 type Work @default.
- W2955184057 sameAs 2955184057 @default.
- W2955184057 citedByCount "24" @default.
- W2955184057 countsByYear W29551840572020 @default.
- W2955184057 countsByYear W29551840572021 @default.
- W2955184057 countsByYear W29551840572022 @default.
- W2955184057 countsByYear W29551840572023 @default.
- W2955184057 crossrefType "book-chapter" @default.
- W2955184057 hasAuthorship W2955184057A5013827007 @default.
- W2955184057 hasAuthorship W2955184057A5024451344 @default.
- W2955184057 hasAuthorship W2955184057A5081835547 @default.
- W2955184057 hasConcept C108583219 @default.
- W2955184057 hasConcept C111919701 @default.
- W2955184057 hasConcept C114614502 @default.
- W2955184057 hasConcept C118505674 @default.
- W2955184057 hasConcept C153180895 @default.
- W2955184057 hasConcept C154945302 @default.
- W2955184057 hasConcept C167981619 @default.
- W2955184057 hasConcept C184720557 @default.
- W2955184057 hasConcept C31972630 @default.
- W2955184057 hasConcept C33923547 @default.
- W2955184057 hasConcept C41008148 @default.
- W2955184057 hasConcept C89600930 @default.
- W2955184057 hasConceptScore W2955184057C108583219 @default.
- W2955184057 hasConceptScore W2955184057C111919701 @default.
- W2955184057 hasConceptScore W2955184057C114614502 @default.
- W2955184057 hasConceptScore W2955184057C118505674 @default.
- W2955184057 hasConceptScore W2955184057C153180895 @default.
- W2955184057 hasConceptScore W2955184057C154945302 @default.
- W2955184057 hasConceptScore W2955184057C167981619 @default.
- W2955184057 hasConceptScore W2955184057C184720557 @default.
- W2955184057 hasConceptScore W2955184057C31972630 @default.
- W2955184057 hasConceptScore W2955184057C33923547 @default.
- W2955184057 hasConceptScore W2955184057C41008148 @default.
- W2955184057 hasConceptScore W2955184057C89600930 @default.
- W2955184057 hasLocation W29551840571 @default.
- W2955184057 hasOpenAccess W2955184057 @default.
- W2955184057 hasPrimaryLocation W29551840571 @default.
- W2955184057 hasRelatedWork W2142795561 @default.
- W2955184057 hasRelatedWork W2384362569 @default.
- W2955184057 hasRelatedWork W2944415726 @default.
- W2955184057 hasRelatedWork W3046682795 @default.
- W2955184057 hasRelatedWork W3186841937 @default.
- W2955184057 hasRelatedWork W4205302943 @default.
- W2955184057 hasRelatedWork W4287010045 @default.
- W2955184057 hasRelatedWork W4315434538 @default.
- W2955184057 hasRelatedWork W4375867731 @default.
- W2955184057 hasRelatedWork W2181948922 @default.
- W2955184057 isParatext "false" @default.
- W2955184057 isRetracted "false" @default.
- W2955184057 magId "2955184057" @default.
- W2955184057 workType "book-chapter" @default.