Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955201199> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2955201199 abstract "Aims To analyse the predictive capacity of 15 machine learning methods for estimating cardiovascular risk in a cohort and to compare them with other risk scales. Methods We calculated cardiovascular risk by means of 15 machine-learning methods and using the SCORE and REGICOR scales and in 38 527 patients in the Spanish ESCARVAL RISK cohort, with 5-year follow-up. We considered patients to be at high risk when the risk of a cardiovascular event was over 5% (according to SCORE and machine learning methods) or over 10% (using REGICOR). The area under the receiver operating curve (AUC) and the C-index were calculated, as well as the diagnostic accuracy rate, error rate, sensitivity, specificity, positive and negative predictive values, positive likelihood ratio, and number needed to treat to prevent a harmful outcome. Results The method with the greatest predictive capacity was quadratic discriminant analysis, with an AUC of 0.7086, followed by Naive Bayes and neural networks, with AUCs of 0.7084 and 0.7042, respectively. REGICOR and SCORE ranked 11th and 12th, respectively, in predictive capacity, with AUCs of 0.63. Seven machine learning methods showed a 7% higher predictive capacity (AUC) as well as higher sensitivity and specificity than the REGICOR and SCORE scales. Conclusions Ten of the 15 machine learning methods tested have a better predictive capacity for cardiovascular events and better classification indicators than the SCORE and REGICOR risk assessment scales commonly used in clinical practice in Spain. Machine learning methods should be considered in the development of future cardiovascular risk scales." @default.
- W2955201199 created "2019-07-12" @default.
- W2955201199 creator A5015964771 @default.
- W2955201199 creator A5024321662 @default.
- W2955201199 creator A5026140526 @default.
- W2955201199 creator A5061535579 @default.
- W2955201199 creator A5066922327 @default.
- W2955201199 creator A5090082221 @default.
- W2955201199 creator A5090194697 @default.
- W2955201199 date "2019-08-04" @default.
- W2955201199 modified "2023-10-18" @default.
- W2955201199 title "Machine learning to predict cardiovascular risk" @default.
- W2955201199 cites W1577491216 @default.
- W2955201199 cites W1926248049 @default.
- W2955201199 cites W1972749728 @default.
- W2955201199 cites W1985967126 @default.
- W2955201199 cites W2049977108 @default.
- W2955201199 cites W2064777739 @default.
- W2955201199 cites W2092044160 @default.
- W2955201199 cites W2105257626 @default.
- W2955201199 cites W2107165713 @default.
- W2955201199 cites W2148092884 @default.
- W2955201199 cites W2486513559 @default.
- W2955201199 cites W2487770199 @default.
- W2955201199 cites W2525984666 @default.
- W2955201199 cites W2526264754 @default.
- W2955201199 cites W2605253636 @default.
- W2955201199 cites W2743269518 @default.
- W2955201199 cites W2750336302 @default.
- W2955201199 cites W2765513796 @default.
- W2955201199 cites W2791804687 @default.
- W2955201199 cites W3001764054 @default.
- W2955201199 cites W429766147 @default.
- W2955201199 doi "https://doi.org/10.1111/ijcp.13389" @default.
- W2955201199 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31264310" @default.
- W2955201199 hasPublicationYear "2019" @default.
- W2955201199 type Work @default.
- W2955201199 sameAs 2955201199 @default.
- W2955201199 citedByCount "46" @default.
- W2955201199 countsByYear W29552011992019 @default.
- W2955201199 countsByYear W29552011992020 @default.
- W2955201199 countsByYear W29552011992021 @default.
- W2955201199 countsByYear W29552011992022 @default.
- W2955201199 countsByYear W29552011992023 @default.
- W2955201199 crossrefType "journal-article" @default.
- W2955201199 hasAuthorship W2955201199A5015964771 @default.
- W2955201199 hasAuthorship W2955201199A5024321662 @default.
- W2955201199 hasAuthorship W2955201199A5026140526 @default.
- W2955201199 hasAuthorship W2955201199A5061535579 @default.
- W2955201199 hasAuthorship W2955201199A5066922327 @default.
- W2955201199 hasAuthorship W2955201199A5090082221 @default.
- W2955201199 hasAuthorship W2955201199A5090194697 @default.
- W2955201199 hasBestOaLocation W29552011991 @default.
- W2955201199 hasConcept C119857082 @default.
- W2955201199 hasConcept C12174686 @default.
- W2955201199 hasConcept C126322002 @default.
- W2955201199 hasConcept C154945302 @default.
- W2955201199 hasConcept C38652104 @default.
- W2955201199 hasConcept C41008148 @default.
- W2955201199 hasConcept C58471807 @default.
- W2955201199 hasConcept C69738355 @default.
- W2955201199 hasConcept C71924100 @default.
- W2955201199 hasConcept C72563966 @default.
- W2955201199 hasConceptScore W2955201199C119857082 @default.
- W2955201199 hasConceptScore W2955201199C12174686 @default.
- W2955201199 hasConceptScore W2955201199C126322002 @default.
- W2955201199 hasConceptScore W2955201199C154945302 @default.
- W2955201199 hasConceptScore W2955201199C38652104 @default.
- W2955201199 hasConceptScore W2955201199C41008148 @default.
- W2955201199 hasConceptScore W2955201199C58471807 @default.
- W2955201199 hasConceptScore W2955201199C69738355 @default.
- W2955201199 hasConceptScore W2955201199C71924100 @default.
- W2955201199 hasConceptScore W2955201199C72563966 @default.
- W2955201199 hasIssue "10" @default.
- W2955201199 hasLocation W29552011991 @default.
- W2955201199 hasLocation W29552011992 @default.
- W2955201199 hasOpenAccess W2955201199 @default.
- W2955201199 hasPrimaryLocation W29552011991 @default.
- W2955201199 hasRelatedWork W2315085516 @default.
- W2955201199 hasRelatedWork W2603773853 @default.
- W2955201199 hasRelatedWork W2961085424 @default.
- W2955201199 hasRelatedWork W4221088574 @default.
- W2955201199 hasRelatedWork W4285260836 @default.
- W2955201199 hasRelatedWork W4286629047 @default.
- W2955201199 hasRelatedWork W4306321456 @default.
- W2955201199 hasRelatedWork W4306674287 @default.
- W2955201199 hasRelatedWork W4385525161 @default.
- W2955201199 hasRelatedWork W4224009465 @default.
- W2955201199 hasVolume "73" @default.
- W2955201199 isParatext "false" @default.
- W2955201199 isRetracted "false" @default.
- W2955201199 magId "2955201199" @default.
- W2955201199 workType "article" @default.