Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955201790> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2955201790 abstract "Heart Disease are among the leading cause of death worldwide. The application of artificial neural network as decision support tool for heart disease detection. However, artificial neural network required multitude of parameter setting in order to find the optimum parameter setting that produce the best performance. This paper proposed the parameter tuning framework for artificial neural network. Statlog heart disease dataset and Cleveland heart disease dataset is used to evaluate the performance of the proposed framework. The results show that the proposed framework able to produce high classification accuracy where the overall classification accuracy for Cleveland dataset is 90.9% and 90% for Statlog dataset." @default.
- W2955201790 created "2019-07-12" @default.
- W2955201790 creator A5007110475 @default.
- W2955201790 creator A5007434763 @default.
- W2955201790 creator A5033990896 @default.
- W2955201790 creator A5090283315 @default.
- W2955201790 date "2018-10-01" @default.
- W2955201790 modified "2023-09-25" @default.
- W2955201790 title "Artificial Neural Network Parameter Tuning Framework For Heart Disease Classification" @default.
- W2955201790 cites W1493519919 @default.
- W2955201790 cites W1586335931 @default.
- W2955201790 cites W1850308234 @default.
- W2955201790 cites W1965587486 @default.
- W2955201790 cites W1981653086 @default.
- W2955201790 cites W1989164753 @default.
- W2955201790 cites W1996668348 @default.
- W2955201790 cites W2017404897 @default.
- W2955201790 cites W2019798812 @default.
- W2955201790 cites W2026841079 @default.
- W2955201790 cites W2052082645 @default.
- W2955201790 cites W2062302861 @default.
- W2955201790 cites W2072357817 @default.
- W2955201790 cites W2089856527 @default.
- W2955201790 cites W2098505831 @default.
- W2955201790 cites W2121394390 @default.
- W2955201790 cites W2137687977 @default.
- W2955201790 cites W2139945672 @default.
- W2955201790 cites W2166853020 @default.
- W2955201790 cites W2250033699 @default.
- W2955201790 cites W2513905129 @default.
- W2955201790 doi "https://doi.org/10.1109/eecsi.2018.8752821" @default.
- W2955201790 hasPublicationYear "2018" @default.
- W2955201790 type Work @default.
- W2955201790 sameAs 2955201790 @default.
- W2955201790 citedByCount "9" @default.
- W2955201790 countsByYear W29552017902020 @default.
- W2955201790 countsByYear W29552017902021 @default.
- W2955201790 countsByYear W29552017902022 @default.
- W2955201790 crossrefType "proceedings-article" @default.
- W2955201790 hasAuthorship W2955201790A5007110475 @default.
- W2955201790 hasAuthorship W2955201790A5007434763 @default.
- W2955201790 hasAuthorship W2955201790A5033990896 @default.
- W2955201790 hasAuthorship W2955201790A5090283315 @default.
- W2955201790 hasConcept C119857082 @default.
- W2955201790 hasConcept C124101348 @default.
- W2955201790 hasConcept C154945302 @default.
- W2955201790 hasConcept C164705383 @default.
- W2955201790 hasConcept C2776342676 @default.
- W2955201790 hasConcept C2780074459 @default.
- W2955201790 hasConcept C41008148 @default.
- W2955201790 hasConcept C50644808 @default.
- W2955201790 hasConcept C71924100 @default.
- W2955201790 hasConceptScore W2955201790C119857082 @default.
- W2955201790 hasConceptScore W2955201790C124101348 @default.
- W2955201790 hasConceptScore W2955201790C154945302 @default.
- W2955201790 hasConceptScore W2955201790C164705383 @default.
- W2955201790 hasConceptScore W2955201790C2776342676 @default.
- W2955201790 hasConceptScore W2955201790C2780074459 @default.
- W2955201790 hasConceptScore W2955201790C41008148 @default.
- W2955201790 hasConceptScore W2955201790C50644808 @default.
- W2955201790 hasConceptScore W2955201790C71924100 @default.
- W2955201790 hasLocation W29552017901 @default.
- W2955201790 hasOpenAccess W2955201790 @default.
- W2955201790 hasPrimaryLocation W29552017901 @default.
- W2955201790 hasRelatedWork W2084779923 @default.
- W2955201790 hasRelatedWork W2140225375 @default.
- W2955201790 hasRelatedWork W2915539499 @default.
- W2955201790 hasRelatedWork W2992775743 @default.
- W2955201790 hasRelatedWork W3034233514 @default.
- W2955201790 hasRelatedWork W30971798 @default.
- W2955201790 hasRelatedWork W3212578714 @default.
- W2955201790 hasRelatedWork W4213142596 @default.
- W2955201790 hasRelatedWork W4280641190 @default.
- W2955201790 hasRelatedWork W1629725936 @default.
- W2955201790 isParatext "false" @default.
- W2955201790 isRetracted "false" @default.
- W2955201790 magId "2955201790" @default.
- W2955201790 workType "article" @default.