Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955244377> ?p ?o ?g. }
- W2955244377 abstract "Abstract Several machine learning approaches have been proposed for predicting new benefits of the existing drugs. Although these methods have introduced new usage(s) of some medications, efficient methods can lead to more accurate predictions. To this end, we proposed a novel machine learning method which is based on a new optimization algorithm, named Trader . To show the capabilities of the proposed algorithm which can be applied to the different scope of science, it was compared with ten other state-of-the-art optimization algorithms based on the standard and advanced benchmark functions. Next, a multi-layer artificial neural network was designed and trained by Trader to predict drug-target interactions (DTIs). Finally, the functionality of the proposed method was investigated on some DTIs datasets and compared with other methods. The data obtained by Trader showed that it eliminates the disadvantages of different optimization algorithms, resulting in a better outcome. Further, the proposed machine learning method was found to achieve a significant level of performance compared to the other popular and efficient approaches in predicting unknown DTIs. All the implemented source codes are freely available at https://github.com/LBBSoft/Trader ." @default.
- W2955244377 created "2019-07-12" @default.
- W2955244377 creator A5026902416 @default.
- W2955244377 creator A5030421501 @default.
- W2955244377 creator A5031279238 @default.
- W2955244377 creator A5031590552 @default.
- W2955244377 date "2019-06-27" @default.
- W2955244377 modified "2023-10-13" @default.
- W2955244377 title "Trader as a new optimization algorithm predicts drug-target interactions efficiently" @default.
- W2955244377 cites W1995919174 @default.
- W2955244377 cites W2006402375 @default.
- W2955244377 cites W2017538986 @default.
- W2955244377 cites W2030851994 @default.
- W2955244377 cites W2054698853 @default.
- W2955244377 cites W2076641746 @default.
- W2955244377 cites W2077655735 @default.
- W2955244377 cites W2122216528 @default.
- W2955244377 cites W2129177905 @default.
- W2955244377 cites W2139516171 @default.
- W2955244377 cites W2140239055 @default.
- W2955244377 cites W2153838454 @default.
- W2955244377 cites W2159482845 @default.
- W2955244377 cites W2170146596 @default.
- W2955244377 cites W2224971544 @default.
- W2955244377 cites W2289113812 @default.
- W2955244377 cites W2343107734 @default.
- W2955244377 cites W2462287285 @default.
- W2955244377 cites W2474546929 @default.
- W2955244377 cites W2508671486 @default.
- W2955244377 cites W2558825838 @default.
- W2955244377 cites W2588262534 @default.
- W2955244377 cites W2606276573 @default.
- W2955244377 cites W2729788619 @default.
- W2955244377 cites W2740012250 @default.
- W2955244377 cites W2744129621 @default.
- W2955244377 cites W2751900761 @default.
- W2955244377 cites W2768230558 @default.
- W2955244377 cites W2783293389 @default.
- W2955244377 cites W2790982990 @default.
- W2955244377 cites W2799991731 @default.
- W2955244377 cites W2805086457 @default.
- W2955244377 cites W2806596154 @default.
- W2955244377 cites W2807821935 @default.
- W2955244377 cites W2835784517 @default.
- W2955244377 cites W2886544065 @default.
- W2955244377 cites W2888273069 @default.
- W2955244377 cites W2888696412 @default.
- W2955244377 cites W2891493392 @default.
- W2955244377 cites W2891838559 @default.
- W2955244377 cites W2902557437 @default.
- W2955244377 cites W2903803734 @default.
- W2955244377 cites W2904158025 @default.
- W2955244377 cites W2904451610 @default.
- W2955244377 cites W2907367312 @default.
- W2955244377 cites W2923682152 @default.
- W2955244377 cites W2938252891 @default.
- W2955244377 cites W2940994176 @default.
- W2955244377 cites W2941000714 @default.
- W2955244377 cites W2944507545 @default.
- W2955244377 cites W2964299987 @default.
- W2955244377 cites W3025685066 @default.
- W2955244377 cites W4294216483 @default.
- W2955244377 cites W435782705 @default.
- W2955244377 doi "https://doi.org/10.1038/s41598-019-45814-8" @default.
- W2955244377 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6597553" @default.
- W2955244377 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31249365" @default.
- W2955244377 hasPublicationYear "2019" @default.
- W2955244377 type Work @default.
- W2955244377 sameAs 2955244377 @default.
- W2955244377 citedByCount "38" @default.
- W2955244377 countsByYear W29552443772019 @default.
- W2955244377 countsByYear W29552443772020 @default.
- W2955244377 countsByYear W29552443772021 @default.
- W2955244377 countsByYear W29552443772022 @default.
- W2955244377 countsByYear W29552443772023 @default.
- W2955244377 crossrefType "journal-article" @default.
- W2955244377 hasAuthorship W2955244377A5026902416 @default.
- W2955244377 hasAuthorship W2955244377A5030421501 @default.
- W2955244377 hasAuthorship W2955244377A5031279238 @default.
- W2955244377 hasAuthorship W2955244377A5031590552 @default.
- W2955244377 hasBestOaLocation W29552443771 @default.
- W2955244377 hasConcept C11413529 @default.
- W2955244377 hasConcept C119857082 @default.
- W2955244377 hasConcept C124101348 @default.
- W2955244377 hasConcept C126255220 @default.
- W2955244377 hasConcept C13280743 @default.
- W2955244377 hasConcept C154945302 @default.
- W2955244377 hasConcept C185798385 @default.
- W2955244377 hasConcept C199360897 @default.
- W2955244377 hasConcept C205649164 @default.
- W2955244377 hasConcept C2778012447 @default.
- W2955244377 hasConcept C2987595161 @default.
- W2955244377 hasConcept C33923547 @default.
- W2955244377 hasConcept C41008148 @default.
- W2955244377 hasConcept C50644808 @default.
- W2955244377 hasConceptScore W2955244377C11413529 @default.
- W2955244377 hasConceptScore W2955244377C119857082 @default.
- W2955244377 hasConceptScore W2955244377C124101348 @default.
- W2955244377 hasConceptScore W2955244377C126255220 @default.
- W2955244377 hasConceptScore W2955244377C13280743 @default.