Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955244952> ?p ?o ?g. }
- W2955244952 endingPage "564" @default.
- W2955244952 startingPage "556" @default.
- W2955244952 abstract "It is unclear how to develop a model based on the combined satellite data and ground monitoring data to accurately estimate daily NO2 levels. Furthermore, the conventional cross-validation (CV) results represent average levels but the model performance may vary greatly from grid to grid. It is an essential issue to evaluate model's prediction ability in different grids and determine the factors affecting model extrapolating ability, which have never been well examined to date. The aim of this study was to compare the ability of three different methods to estimate the daily NO2 across mainland China during 2014–2016; and to develop a novel two-stage meta-analysis method for exploring the influence of the number and the distribution of nearby sites on grid-level prediction accuracy. For better estimating the daily NO2 level, we developed and compared three methods, including universal kriging model, satellite-based method (Non-linear exposure-lag-response model & Extreme gradient boosting combined technique) and the kriging-calibrated satellite method. For exploring influencing factors, the two-stage meta-analysis method was purposed. The kriging-calibrated satellite method had an overall CV R-square and root mean square error (RMSE) of 0.85 and 7.87μg/m3, better than the Universal Kriging model and the satellite-based method (CV R2 = 0.57 and 0.81). The two-stage meta-analysis method revealed that the model performance did decrease with the sparser distribution of nearby sites. And adding 5 sites within 50 km in the random mode can bring 17.51% improvement in model extrapolating ability. The kriging-calibration can help satellite-based machine learning to provide more accurate NO2 prediction. Our novel evaluation method can provide the suggestion of adding new sites effectively within a limit budget." @default.
- W2955244952 created "2019-07-12" @default.
- W2955244952 creator A5002662971 @default.
- W2955244952 creator A5009826575 @default.
- W2955244952 creator A5020079595 @default.
- W2955244952 creator A5061901723 @default.
- W2955244952 creator A5083967189 @default.
- W2955244952 date "2019-11-01" @default.
- W2955244952 modified "2023-10-16" @default.
- W2955244952 title "A kriging-calibrated machine learning method for estimating daily ground-level NO2 in mainland China" @default.
- W2955244952 cites W1905902179 @default.
- W2955244952 cites W1984263491 @default.
- W2955244952 cites W1992739954 @default.
- W2955244952 cites W1993983873 @default.
- W2955244952 cites W2006752923 @default.
- W2955244952 cites W2016942996 @default.
- W2955244952 cites W2024510125 @default.
- W2955244952 cites W2024873009 @default.
- W2955244952 cites W2027409234 @default.
- W2955244952 cites W2048609183 @default.
- W2955244952 cites W2049763161 @default.
- W2955244952 cites W2057829983 @default.
- W2955244952 cites W2071765203 @default.
- W2955244952 cites W2084785797 @default.
- W2955244952 cites W2119019979 @default.
- W2955244952 cites W2130304844 @default.
- W2955244952 cites W2155262384 @default.
- W2955244952 cites W2288470020 @default.
- W2955244952 cites W2291282024 @default.
- W2955244952 cites W2301615472 @default.
- W2955244952 cites W2321205394 @default.
- W2955244952 cites W2564696446 @default.
- W2955244952 cites W2755897961 @default.
- W2955244952 cites W2766780558 @default.
- W2955244952 cites W2767202706 @default.
- W2955244952 cites W2770791516 @default.
- W2955244952 cites W2776069591 @default.
- W2955244952 cites W2792404378 @default.
- W2955244952 cites W2800133189 @default.
- W2955244952 cites W2801493073 @default.
- W2955244952 cites W2888926545 @default.
- W2955244952 cites W2896320754 @default.
- W2955244952 cites W2912750253 @default.
- W2955244952 cites W4296432369 @default.
- W2955244952 doi "https://doi.org/10.1016/j.scitotenv.2019.06.349" @default.
- W2955244952 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31301496" @default.
- W2955244952 hasPublicationYear "2019" @default.
- W2955244952 type Work @default.
- W2955244952 sameAs 2955244952 @default.
- W2955244952 citedByCount "32" @default.
- W2955244952 countsByYear W29552449522020 @default.
- W2955244952 countsByYear W29552449522021 @default.
- W2955244952 countsByYear W29552449522022 @default.
- W2955244952 countsByYear W29552449522023 @default.
- W2955244952 crossrefType "journal-article" @default.
- W2955244952 hasAuthorship W2955244952A5002662971 @default.
- W2955244952 hasAuthorship W2955244952A5009826575 @default.
- W2955244952 hasAuthorship W2955244952A5020079595 @default.
- W2955244952 hasAuthorship W2955244952A5061901723 @default.
- W2955244952 hasAuthorship W2955244952A5083967189 @default.
- W2955244952 hasConcept C105795698 @default.
- W2955244952 hasConcept C119857082 @default.
- W2955244952 hasConcept C127413603 @default.
- W2955244952 hasConcept C139945424 @default.
- W2955244952 hasConcept C146978453 @default.
- W2955244952 hasConcept C169258074 @default.
- W2955244952 hasConcept C19269812 @default.
- W2955244952 hasConcept C33923547 @default.
- W2955244952 hasConcept C39432304 @default.
- W2955244952 hasConcept C41008148 @default.
- W2955244952 hasConcept C70153297 @default.
- W2955244952 hasConcept C81692654 @default.
- W2955244952 hasConceptScore W2955244952C105795698 @default.
- W2955244952 hasConceptScore W2955244952C119857082 @default.
- W2955244952 hasConceptScore W2955244952C127413603 @default.
- W2955244952 hasConceptScore W2955244952C139945424 @default.
- W2955244952 hasConceptScore W2955244952C146978453 @default.
- W2955244952 hasConceptScore W2955244952C169258074 @default.
- W2955244952 hasConceptScore W2955244952C19269812 @default.
- W2955244952 hasConceptScore W2955244952C33923547 @default.
- W2955244952 hasConceptScore W2955244952C39432304 @default.
- W2955244952 hasConceptScore W2955244952C41008148 @default.
- W2955244952 hasConceptScore W2955244952C70153297 @default.
- W2955244952 hasConceptScore W2955244952C81692654 @default.
- W2955244952 hasFunder F4320321001 @default.
- W2955244952 hasFunder F4320321921 @default.
- W2955244952 hasLocation W29552449521 @default.
- W2955244952 hasLocation W29552449522 @default.
- W2955244952 hasOpenAccess W2955244952 @default.
- W2955244952 hasPrimaryLocation W29552449521 @default.
- W2955244952 hasRelatedWork W1968523686 @default.
- W2955244952 hasRelatedWork W2151794096 @default.
- W2955244952 hasRelatedWork W2167342507 @default.
- W2955244952 hasRelatedWork W2199291344 @default.
- W2955244952 hasRelatedWork W298893735 @default.
- W2955244952 hasRelatedWork W3123323883 @default.
- W2955244952 hasRelatedWork W4221140712 @default.
- W2955244952 hasRelatedWork W4247222564 @default.