Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955287842> ?p ?o ?g. }
- W2955287842 endingPage "10" @default.
- W2955287842 startingPage "1" @default.
- W2955287842 abstract "The speeding violation has become a key concern in the traffic safety management, as it increases the risk of traffic crashes, as well as the severity of these crashes. This uncivilized phenomenon is prominent and presents an increasing trend in Wujiang in recent years, which severely endangers the road traffic safety. This study is approved by the Traffic Police Brigade of Wujiang Public Security Bureau and aims to explore the characteristic of the speeding violation behaviour and attempt to make an effective prediction about it. This study proposes a speeding violation type (including type 1 and type 2) prediction method using electronic law enforcement data obtained from the public security administration of Wujiang. Before the prediction, a speeding violation influence factor analysis based on the binary logical regression model is proposed. The binary logical regression analysis identifies that the license plate, season, speeding area, position, and rainfall are the influence factors of Wujiang’s speeding violation. Then a decision tree method is used to predict the speeding violation type according to the influence factors, and from which the speeding violation situations can be determined. The prediction results demonstrate that under the hypothetical conditions, the high speeding violation level (i.e., type 2) tends to occur under high rainfall environment, and the foreign license plate and autumn present a larger probability of high speeding violation level than the local license plate and other seasons (i.e., spring, summer, and winter), respectively. Finally, a model comparison between the proposed method and other tree-based approaches is conducted. The comparison results show that the decision tree method outperforms other methods in prediction performance (including accuracy, precision, recall, and classification error), runtime, and ROC curve, which indicates that the decision tree method is feasible in predicting the speeding violation type of Wujiang. Based on the findings, the traffic managers can macroscopically grasp the speeding violation situation of the whole road networks, which can be referred for making the related polices and taking intervention measures." @default.
- W2955287842 created "2019-07-12" @default.
- W2955287842 creator A5012824397 @default.
- W2955287842 creator A5064900649 @default.
- W2955287842 creator A5075896685 @default.
- W2955287842 creator A5087524282 @default.
- W2955287842 date "2019-06-27" @default.
- W2955287842 modified "2023-10-17" @default.
- W2955287842 title "Speeding Violation Type Prediction Based on Decision Tree Method: A Case Study in Wujiang, China" @default.
- W2955287842 cites W1969085927 @default.
- W2955287842 cites W1975790834 @default.
- W2955287842 cites W1976303937 @default.
- W2955287842 cites W1976603371 @default.
- W2955287842 cites W1989111961 @default.
- W2955287842 cites W2007072421 @default.
- W2955287842 cites W2017260504 @default.
- W2955287842 cites W2018382015 @default.
- W2955287842 cites W2022803262 @default.
- W2955287842 cites W2023763378 @default.
- W2955287842 cites W2024955945 @default.
- W2955287842 cites W2031697860 @default.
- W2955287842 cites W2036279354 @default.
- W2955287842 cites W2038037995 @default.
- W2955287842 cites W2046508703 @default.
- W2955287842 cites W2050540923 @default.
- W2955287842 cites W2054896977 @default.
- W2955287842 cites W2056239517 @default.
- W2955287842 cites W2061914364 @default.
- W2955287842 cites W2064954028 @default.
- W2955287842 cites W2085521046 @default.
- W2955287842 cites W2131089926 @default.
- W2955287842 cites W2173875951 @default.
- W2955287842 cites W2290016446 @default.
- W2955287842 cites W2345564146 @default.
- W2955287842 cites W2532629823 @default.
- W2955287842 cites W2549330817 @default.
- W2955287842 cites W2573696354 @default.
- W2955287842 cites W2766493792 @default.
- W2955287842 cites W2783765022 @default.
- W2955287842 cites W2799497597 @default.
- W2955287842 doi "https://doi.org/10.1155/2019/8650845" @default.
- W2955287842 hasPublicationYear "2019" @default.
- W2955287842 type Work @default.
- W2955287842 sameAs 2955287842 @default.
- W2955287842 citedByCount "15" @default.
- W2955287842 countsByYear W29552878422020 @default.
- W2955287842 countsByYear W29552878422021 @default.
- W2955287842 countsByYear W29552878422022 @default.
- W2955287842 countsByYear W29552878422023 @default.
- W2955287842 crossrefType "journal-article" @default.
- W2955287842 hasAuthorship W2955287842A5012824397 @default.
- W2955287842 hasAuthorship W2955287842A5064900649 @default.
- W2955287842 hasAuthorship W2955287842A5075896685 @default.
- W2955287842 hasAuthorship W2955287842A5087524282 @default.
- W2955287842 hasBestOaLocation W29552878421 @default.
- W2955287842 hasConcept C111919701 @default.
- W2955287842 hasConcept C119857082 @default.
- W2955287842 hasConcept C124101348 @default.
- W2955287842 hasConcept C127413603 @default.
- W2955287842 hasConcept C152877465 @default.
- W2955287842 hasConcept C17744445 @default.
- W2955287842 hasConcept C199539241 @default.
- W2955287842 hasConcept C2779777834 @default.
- W2955287842 hasConcept C2780262971 @default.
- W2955287842 hasConcept C2780560020 @default.
- W2955287842 hasConcept C41008148 @default.
- W2955287842 hasConcept C42475967 @default.
- W2955287842 hasConcept C84525736 @default.
- W2955287842 hasConceptScore W2955287842C111919701 @default.
- W2955287842 hasConceptScore W2955287842C119857082 @default.
- W2955287842 hasConceptScore W2955287842C124101348 @default.
- W2955287842 hasConceptScore W2955287842C127413603 @default.
- W2955287842 hasConceptScore W2955287842C152877465 @default.
- W2955287842 hasConceptScore W2955287842C17744445 @default.
- W2955287842 hasConceptScore W2955287842C199539241 @default.
- W2955287842 hasConceptScore W2955287842C2779777834 @default.
- W2955287842 hasConceptScore W2955287842C2780262971 @default.
- W2955287842 hasConceptScore W2955287842C2780560020 @default.
- W2955287842 hasConceptScore W2955287842C41008148 @default.
- W2955287842 hasConceptScore W2955287842C42475967 @default.
- W2955287842 hasConceptScore W2955287842C84525736 @default.
- W2955287842 hasFunder F4320321001 @default.
- W2955287842 hasLocation W29552878421 @default.
- W2955287842 hasLocation W29552878422 @default.
- W2955287842 hasOpenAccess W2955287842 @default.
- W2955287842 hasPrimaryLocation W29552878421 @default.
- W2955287842 hasRelatedWork W2064050250 @default.
- W2955287842 hasRelatedWork W2484312176 @default.
- W2955287842 hasRelatedWork W2899084033 @default.
- W2955287842 hasRelatedWork W4298855209 @default.
- W2955287842 hasRelatedWork W566705460 @default.
- W2955287842 hasRelatedWork W600913596 @default.
- W2955287842 hasRelatedWork W62869355 @default.
- W2955287842 hasRelatedWork W641059199 @default.
- W2955287842 hasRelatedWork W828950042 @default.
- W2955287842 hasRelatedWork W2340061128 @default.
- W2955287842 hasVolume "2019" @default.
- W2955287842 isParatext "false" @default.