Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955296596> ?p ?o ?g. }
- W2955296596 endingPage "1782" @default.
- W2955296596 startingPage "1771" @default.
- W2955296596 abstract "Growth in the knowledge of cancer biology has led to the emergence and evolution of cancer nanomedicines by providing the rationale for leveraging nanotechnology to develop better treatment options. The discovery of nanometer-sized intercellular openings in the defective angiogenic tumor vasculature contributed to the development of an idea for the well-known cancer passive targeting regime, enhanced permeability and retention (EPR) effect, of the nanomedicines. Recently, reactive oxygen species (ROS) have been highlighted as one of the key players that underlie the acquisition of the various hallmarks of cancer. As ROS are associated with all stages of cancer, their applications in cancer treatment based on the following concentration-dependent implications have attracted much attention: (1) low to moderate levels of ROS as key signaling molecules, (2) elevated levels of ROS in cancer cells as one of the unique characteristics of cancer, and (3) excessive levels of ROS as cytotoxic agents. Considering ROS from a different point of view, various cancer nanomedicines have been designed to achieve spatiotemporal control of therapeutic action, the main research focus in this area. This Account includes our efforts and preclinical achievements in development of nanomedicines for a range of ROS-mediated cancer therapies. It begins with general background regarding cancer nanomedicines, the significance of ROS in cancer, and a brief overview of ROS-mediated approaches for cancer therapy. Then, this Account highlights the two key roles of ROS that define therapeutic purposes of cancer nanomedicines: (1) ROS as drug delivery enhancers and (2) ROS as cell death inducers. The former inspired us to develop nitric oxide-generating nanoparticles for improved EPR effect, endogenous ROS-responsive polymeric micelles for enhanced intracellular drug delivery, and exogenous ROS-activated micelles for subcellular localization via photochemical internalization. While refining conventional chemotherapy, recent researches also have focused on the latter, the cytotoxic ROS, to advance alternative treatment modalities such as oxidation therapy, photodynamic therapy (PDT), and sonodynamic therapy (SDT). In particular, we have been motivated to develop polymeric nanoreactors containing enzymes to produce H2O2 for oxidation therapy, photosensitizer-loaded gold-nanoclustered polymeric nanoassemblies for photothermally activated PDT overcoming the oxygen dependency of PDT, and hydrophilized TiO2 nanoparticles and Au-TiO2 nanocomposites as novel sonosensitizers for improved SDT efficiency. The integration of nanomedicine and ROS-mediated therapy has emerged as the new paradigm in the treatment of cancer, based on promising proof-of-concept demonstrations in preclinical studies. Further efforts to ensure clinical translation along with more sophisticated cancer nanomedicines to address relevant challenges are expected to be made in the coming years." @default.
- W2955296596 created "2019-07-12" @default.
- W2955296596 creator A5000953547 @default.
- W2955296596 creator A5015097923 @default.
- W2955296596 creator A5022305669 @default.
- W2955296596 creator A5054638945 @default.
- W2955296596 creator A5079257522 @default.
- W2955296596 date "2019-06-26" @default.
- W2955296596 modified "2023-10-14" @default.
- W2955296596 title "Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment" @default.
- W2955296596 cites W1677499164 @default.
- W2955296596 cites W1969524738 @default.
- W2955296596 cites W1972708772 @default.
- W2955296596 cites W1972779889 @default.
- W2955296596 cites W1983692618 @default.
- W2955296596 cites W1984319911 @default.
- W2955296596 cites W2005517353 @default.
- W2955296596 cites W2008045805 @default.
- W2955296596 cites W2008294808 @default.
- W2955296596 cites W2021655408 @default.
- W2955296596 cites W2026954356 @default.
- W2955296596 cites W2028897202 @default.
- W2955296596 cites W2063160396 @default.
- W2955296596 cites W2073331259 @default.
- W2955296596 cites W2073381246 @default.
- W2955296596 cites W2079445254 @default.
- W2955296596 cites W2092527323 @default.
- W2955296596 cites W2094908805 @default.
- W2955296596 cites W2102472842 @default.
- W2955296596 cites W2117692326 @default.
- W2955296596 cites W2151467658 @default.
- W2955296596 cites W2152764444 @default.
- W2955296596 cites W2298818955 @default.
- W2955296596 cites W2320574135 @default.
- W2955296596 cites W2323017470 @default.
- W2955296596 cites W2410933689 @default.
- W2955296596 cites W2465658363 @default.
- W2955296596 cites W2466668462 @default.
- W2955296596 cites W2513056697 @default.
- W2955296596 cites W2518509288 @default.
- W2955296596 cites W2522213855 @default.
- W2955296596 cites W2529562623 @default.
- W2955296596 cites W2553904358 @default.
- W2955296596 cites W2554773181 @default.
- W2955296596 cites W2562900174 @default.
- W2955296596 cites W2568075194 @default.
- W2955296596 cites W2568258136 @default.
- W2955296596 cites W2615885638 @default.
- W2955296596 cites W2626099380 @default.
- W2955296596 cites W2735986847 @default.
- W2955296596 cites W2747423355 @default.
- W2955296596 cites W2756098668 @default.
- W2955296596 cites W2762170511 @default.
- W2955296596 cites W2790551110 @default.
- W2955296596 cites W2796781998 @default.
- W2955296596 cites W2797619548 @default.
- W2955296596 cites W2811501377 @default.
- W2955296596 cites W2887202105 @default.
- W2955296596 cites W2889461539 @default.
- W2955296596 cites W2898015119 @default.
- W2955296596 cites W2899457310 @default.
- W2955296596 cites W2901507442 @default.
- W2955296596 cites W2915769798 @default.
- W2955296596 doi "https://doi.org/10.1021/acs.accounts.9b00136" @default.
- W2955296596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31241894" @default.
- W2955296596 hasPublicationYear "2019" @default.
- W2955296596 type Work @default.
- W2955296596 sameAs 2955296596 @default.
- W2955296596 citedByCount "224" @default.
- W2955296596 countsByYear W29552965962019 @default.
- W2955296596 countsByYear W29552965962020 @default.
- W2955296596 countsByYear W29552965962021 @default.
- W2955296596 countsByYear W29552965962022 @default.
- W2955296596 countsByYear W29552965962023 @default.
- W2955296596 crossrefType "journal-article" @default.
- W2955296596 hasAuthorship W2955296596A5000953547 @default.
- W2955296596 hasAuthorship W2955296596A5015097923 @default.
- W2955296596 hasAuthorship W2955296596A5022305669 @default.
- W2955296596 hasAuthorship W2955296596A5054638945 @default.
- W2955296596 hasAuthorship W2955296596A5079257522 @default.
- W2955296596 hasConcept C121608353 @default.
- W2955296596 hasConcept C126322002 @default.
- W2955296596 hasConcept C15083742 @default.
- W2955296596 hasConcept C155672457 @default.
- W2955296596 hasConcept C171250308 @default.
- W2955296596 hasConcept C192562407 @default.
- W2955296596 hasConcept C2983331546 @default.
- W2955296596 hasConcept C3019816032 @default.
- W2955296596 hasConcept C48349386 @default.
- W2955296596 hasConcept C502942594 @default.
- W2955296596 hasConcept C71924100 @default.
- W2955296596 hasConcept C86803240 @default.
- W2955296596 hasConcept C95444343 @default.
- W2955296596 hasConcept C96232424 @default.
- W2955296596 hasConceptScore W2955296596C121608353 @default.
- W2955296596 hasConceptScore W2955296596C126322002 @default.
- W2955296596 hasConceptScore W2955296596C15083742 @default.
- W2955296596 hasConceptScore W2955296596C155672457 @default.