Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955306557> ?p ?o ?g. }
- W2955306557 endingPage "2258" @default.
- W2955306557 startingPage "2254" @default.
- W2955306557 abstract "In this letter, a new deep learning (DL) approach is proposed to solve the electromagnetic inverse scattering (EMIS) problems. The conventional methods for solving inverse problems face various challenges including strong ill-conditions, high contrast, expensive computation cost, and unavoidable intrinsic nonlinearity. To overcome these issues, we propose a new two-step machine learning based approach. In the first step, a complex-valued deep convolutional neural network is employed to retrieve initial contrasts (permittivities) of dielectric scatterers from measured scattering data. In the second step, the previously obtained contrasts are input into a complex-valued deep residual convolutional neural network to refine the reconstruction of images. Consequently, the EMIS problem can be solved with much higher accuracy even for high-contrast objects. Numerical examples have demonstrated the capability of the newly proposed method with the improved accuracy. The proposed DL approach for EMIS problem serves a new path for realizing real-time quantitative microwave imaging for high-contrast objects." @default.
- W2955306557 created "2019-07-12" @default.
- W2955306557 creator A5010694674 @default.
- W2955306557 creator A5015375162 @default.
- W2955306557 creator A5036046769 @default.
- W2955306557 date "2019-11-01" @default.
- W2955306557 modified "2023-10-10" @default.
- W2955306557 title "Two-Step Enhanced Deep Learning Approach for Electromagnetic Inverse Scattering Problems" @default.
- W2955306557 cites W1885185971 @default.
- W2955306557 cites W1965215498 @default.
- W2955306557 cites W1978342095 @default.
- W2955306557 cites W1993854684 @default.
- W2955306557 cites W2035489376 @default.
- W2955306557 cites W2046345533 @default.
- W2955306557 cites W2046405243 @default.
- W2955306557 cites W2074223890 @default.
- W2955306557 cites W2082205811 @default.
- W2955306557 cites W2085102704 @default.
- W2955306557 cites W2087077577 @default.
- W2955306557 cites W2100707489 @default.
- W2955306557 cites W2106002835 @default.
- W2955306557 cites W2142375107 @default.
- W2955306557 cites W2143368686 @default.
- W2955306557 cites W2150274370 @default.
- W2955306557 cites W2154741022 @default.
- W2955306557 cites W2163823030 @default.
- W2955306557 cites W2194775991 @default.
- W2955306557 cites W2342920589 @default.
- W2955306557 cites W2410591237 @default.
- W2955306557 cites W2478138006 @default.
- W2955306557 cites W2568169206 @default.
- W2955306557 cites W2574952845 @default.
- W2955306557 cites W2615263668 @default.
- W2955306557 cites W2618530766 @default.
- W2955306557 cites W2624972355 @default.
- W2955306557 cites W2755736376 @default.
- W2955306557 cites W2765858919 @default.
- W2955306557 cites W2767248316 @default.
- W2955306557 cites W2769250359 @default.
- W2955306557 cites W2793055587 @default.
- W2955306557 cites W2800441593 @default.
- W2955306557 cites W2894120608 @default.
- W2955306557 cites W2896048271 @default.
- W2955306557 cites W2899164079 @default.
- W2955306557 cites W2908289021 @default.
- W2955306557 cites W2963289862 @default.
- W2955306557 cites W2964269625 @default.
- W2955306557 cites W843030686 @default.
- W2955306557 doi "https://doi.org/10.1109/lawp.2019.2925578" @default.
- W2955306557 hasPublicationYear "2019" @default.
- W2955306557 type Work @default.
- W2955306557 sameAs 2955306557 @default.
- W2955306557 citedByCount "73" @default.
- W2955306557 countsByYear W29553065572019 @default.
- W2955306557 countsByYear W29553065572020 @default.
- W2955306557 countsByYear W29553065572021 @default.
- W2955306557 countsByYear W29553065572022 @default.
- W2955306557 countsByYear W29553065572023 @default.
- W2955306557 crossrefType "journal-article" @default.
- W2955306557 hasAuthorship W2955306557A5010694674 @default.
- W2955306557 hasAuthorship W2955306557A5015375162 @default.
- W2955306557 hasAuthorship W2955306557A5036046769 @default.
- W2955306557 hasConcept C120665830 @default.
- W2955306557 hasConcept C121332964 @default.
- W2955306557 hasConcept C126255220 @default.
- W2955306557 hasConcept C134306372 @default.
- W2955306557 hasConcept C135252773 @default.
- W2955306557 hasConcept C174558057 @default.
- W2955306557 hasConcept C191486275 @default.
- W2955306557 hasConcept C206844423 @default.
- W2955306557 hasConcept C28843909 @default.
- W2955306557 hasConcept C2909720056 @default.
- W2955306557 hasConcept C33923547 @default.
- W2955306557 hasConcept C41008148 @default.
- W2955306557 hasConcept C61696701 @default.
- W2955306557 hasConcept C62520636 @default.
- W2955306557 hasConceptScore W2955306557C120665830 @default.
- W2955306557 hasConceptScore W2955306557C121332964 @default.
- W2955306557 hasConceptScore W2955306557C126255220 @default.
- W2955306557 hasConceptScore W2955306557C134306372 @default.
- W2955306557 hasConceptScore W2955306557C135252773 @default.
- W2955306557 hasConceptScore W2955306557C174558057 @default.
- W2955306557 hasConceptScore W2955306557C191486275 @default.
- W2955306557 hasConceptScore W2955306557C206844423 @default.
- W2955306557 hasConceptScore W2955306557C28843909 @default.
- W2955306557 hasConceptScore W2955306557C2909720056 @default.
- W2955306557 hasConceptScore W2955306557C33923547 @default.
- W2955306557 hasConceptScore W2955306557C41008148 @default.
- W2955306557 hasConceptScore W2955306557C61696701 @default.
- W2955306557 hasConceptScore W2955306557C62520636 @default.
- W2955306557 hasFunder F4320321001 @default.
- W2955306557 hasIssue "11" @default.
- W2955306557 hasLocation W29553065571 @default.
- W2955306557 hasOpenAccess W2955306557 @default.
- W2955306557 hasPrimaryLocation W29553065571 @default.
- W2955306557 hasRelatedWork W1500912217 @default.
- W2955306557 hasRelatedWork W1597655347 @default.
- W2955306557 hasRelatedWork W1648809702 @default.