Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955308209> ?p ?o ?g. }
- W2955308209 abstract "Neural Networks (NNs) have become the mainstream technology in the artificial intelligence (AI) renaissance over the past decade. Among different types of neural networks, convolutional neural networks (CNNs) have been widely adopted as they have achieved leading results in many fields such as computer vision and speech recognition. This success in part is due to the widespread availability of capable underlying hardware platforms. Applications have always been a driving factor for design of such hardware architectures. Hardware specialization can expose us to novel architectural solutions, which can outperform general purpose computers for tasks at hand. Although different applications demand for different performance measures, they all share speed and energy efficiency as high priorities. Meanwhile, photonics processing has seen a resurgence due to its inherited high speed and low power nature. Here, we investigate the potential of using photonics in CNNs by proposing a CNN accelerator design based on Winograd filtering algorithm. Our evaluation results show that while a photonic accelerator can compete with current-state-of-the-art electronic platforms in terms of both speed and power, it has the potential to improve the energy efficiency by up to three orders of magnitude." @default.
- W2955308209 created "2019-07-12" @default.
- W2955308209 creator A5001914825 @default.
- W2955308209 creator A5014196859 @default.
- W2955308209 creator A5015344315 @default.
- W2955308209 creator A5053069725 @default.
- W2955308209 creator A5068219598 @default.
- W2955308209 date "2019-06-25" @default.
- W2955308209 modified "2023-09-27" @default.
- W2955308209 title "A Winograd-based Integrated Photonics Accelerator for Convolutional Neural Networks" @default.
- W2955308209 cites W1508018340 @default.
- W2955308209 cites W1667652561 @default.
- W2955308209 cites W1686810756 @default.
- W2955308209 cites W1789336918 @default.
- W2955308209 cites W1922123711 @default.
- W2955308209 cites W1976238733 @default.
- W2955308209 cites W1977969953 @default.
- W2955308209 cites W2017826154 @default.
- W2955308209 cites W2021714653 @default.
- W2955308209 cites W2027342132 @default.
- W2955308209 cites W2048442290 @default.
- W2955308209 cites W2051270432 @default.
- W2955308209 cites W2052879612 @default.
- W2955308209 cites W2053675542 @default.
- W2955308209 cites W2091382331 @default.
- W2955308209 cites W2094756095 @default.
- W2955308209 cites W2172654076 @default.
- W2955308209 cites W2183341477 @default.
- W2955308209 cites W2194775991 @default.
- W2955308209 cites W2222375720 @default.
- W2955308209 cites W2276486856 @default.
- W2955308209 cites W2294282016 @default.
- W2955308209 cites W2406903132 @default.
- W2955308209 cites W2421573266 @default.
- W2955308209 cites W2469565713 @default.
- W2955308209 cites W2476616835 @default.
- W2955308209 cites W2580715839 @default.
- W2955308209 cites W2605663629 @default.
- W2955308209 cites W2729080111 @default.
- W2955308209 cites W2739588406 @default.
- W2955308209 cites W2752849906 @default.
- W2955308209 cites W2800305089 @default.
- W2955308209 cites W2808999358 @default.
- W2955308209 cites W2810006640 @default.
- W2955308209 cites W2886970706 @default.
- W2955308209 cites W2889915110 @default.
- W2955308209 cites W2896983500 @default.
- W2955308209 cites W2900709571 @default.
- W2955308209 cites W2944119451 @default.
- W2955308209 cites W2945546236 @default.
- W2955308209 cites W3099250172 @default.
- W2955308209 cites W3103046660 @default.
- W2955308209 cites W3103145197 @default.
- W2955308209 hasPublicationYear "2019" @default.
- W2955308209 type Work @default.
- W2955308209 sameAs 2955308209 @default.
- W2955308209 citedByCount "0" @default.
- W2955308209 crossrefType "posted-content" @default.
- W2955308209 hasAuthorship W2955308209A5001914825 @default.
- W2955308209 hasAuthorship W2955308209A5014196859 @default.
- W2955308209 hasAuthorship W2955308209A5015344315 @default.
- W2955308209 hasAuthorship W2955308209A5053069725 @default.
- W2955308209 hasAuthorship W2955308209A5068219598 @default.
- W2955308209 hasConcept C108583219 @default.
- W2955308209 hasConcept C113775141 @default.
- W2955308209 hasConcept C118524514 @default.
- W2955308209 hasConcept C119599485 @default.
- W2955308209 hasConcept C120665830 @default.
- W2955308209 hasConcept C121332964 @default.
- W2955308209 hasConcept C127413603 @default.
- W2955308209 hasConcept C138885662 @default.
- W2955308209 hasConcept C142362112 @default.
- W2955308209 hasConcept C154945302 @default.
- W2955308209 hasConcept C163258240 @default.
- W2955308209 hasConcept C20788544 @default.
- W2955308209 hasConcept C27206212 @default.
- W2955308209 hasConcept C2742236 @default.
- W2955308209 hasConcept C2777617010 @default.
- W2955308209 hasConcept C41008148 @default.
- W2955308209 hasConcept C42935608 @default.
- W2955308209 hasConcept C50644808 @default.
- W2955308209 hasConcept C52069626 @default.
- W2955308209 hasConcept C52119013 @default.
- W2955308209 hasConcept C62520636 @default.
- W2955308209 hasConcept C81363708 @default.
- W2955308209 hasConcept C9390403 @default.
- W2955308209 hasConceptScore W2955308209C108583219 @default.
- W2955308209 hasConceptScore W2955308209C113775141 @default.
- W2955308209 hasConceptScore W2955308209C118524514 @default.
- W2955308209 hasConceptScore W2955308209C119599485 @default.
- W2955308209 hasConceptScore W2955308209C120665830 @default.
- W2955308209 hasConceptScore W2955308209C121332964 @default.
- W2955308209 hasConceptScore W2955308209C127413603 @default.
- W2955308209 hasConceptScore W2955308209C138885662 @default.
- W2955308209 hasConceptScore W2955308209C142362112 @default.
- W2955308209 hasConceptScore W2955308209C154945302 @default.
- W2955308209 hasConceptScore W2955308209C163258240 @default.
- W2955308209 hasConceptScore W2955308209C20788544 @default.
- W2955308209 hasConceptScore W2955308209C27206212 @default.
- W2955308209 hasConceptScore W2955308209C2742236 @default.