Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955349119> ?p ?o ?g. }
- W2955349119 endingPage "103888" @default.
- W2955349119 startingPage "103888" @default.
- W2955349119 abstract "Archaeal and bacterial glycerol dialkyl glycerol tetraethers (GDGTs) are globally abundant in soils under various climatic conditions, but little is known about their sources, relative distribution, and environmental controls on their diversity in high latitude permafrost deposits. Thus, constraints on GDGT-based proxies, such as methylation of branched GDGTs (MBT) or cyclization of branched GDGTs (CBT) used to infer mean annual temperature or soil pH, are also sparse. We investigated the GDGT diversity in typical North Siberian permafrost deposits including the active layer of polygonal tundra soils (seasonally frozen ground), fluvial terrace/floodplain sediments, Holocene and Pleistocene thermokarst sediments, and late Pleistocene Ice Complex (Yedoma). Our data show that isoprenoid GDGTs are produced by both methanotrophic and methanogenic Euryarchaeota, as well as Thaumarchaeota, but their abundance does not seem to be controlled by the investigated physicochemical parameters including %TOC, %TN, and soil pH. Branched GDGTs (brGDGTs) show similar distributional changes to those observed in other high latitude soil samples, i.e., a dominance of pentamethylated and hexamethylated brGDGTs, likely reflecting the adaptation to low temperatures and a positive correlation of the degree of cyclization with soil pH. Specifically, brGDGT-IIIa correlates positively with %TOC and %TN and negatively with soil pH, while brGDGT-Ib and brGDGT-IIb correlate negatively with %TOC and %TN and positively with pH. Moreover, we observe a negative correlation between 5-methyl and 6-methyl brGDGTs without cyclopentane moieties (except brGDGT-IIIa), but this anticorrelation does not seem to be related to the investigated physicochemical parameters. The observed brGDGT distribution yields a permafrost-specific soil pH calibration, pH'PF=1.8451×CBT'PF+8.5396 (r2 = 0.60, RMSE = 0.074; n = 109). The different investigated deposit types show some distinct GDGT distributional changes and appear to be distinguishable based on the relative abundance of crenarchaeol, GDGT-0/(crenarchaeol + GDGT-0) ratios, and CBT’PF values, although we also observe strong heterogeneity for each deposit type. In particular, Yedoma and the active layer of polygonal tundra soils represent distinct endmembers, which differ from each other, as well as from fluvial terrace/floodplain sediments and thermokarst sediments, while the latter two deposit types have similar GDGT fingerprints that are not easily distinguishable. Yet, the observed GDGT distributional differences have implications for GDGT proxies analyzed in aquatic suspended matter and sediments. Quantitative estimates of permafrost erosion, as well as soil pH inferred using BIT indices or CBT’PF, respectively, may be biased by changing relative contributions of different deposit types (carrying their respective GDGT signals) to the exported permafrost OC, particularly from Yedoma and the active layer of polygonal tundra soils." @default.
- W2955349119 created "2019-07-12" @default.
- W2955349119 creator A5009728940 @default.
- W2955349119 creator A5026116878 @default.
- W2955349119 creator A5048134394 @default.
- W2955349119 creator A5056396556 @default.
- W2955349119 creator A5078966303 @default.
- W2955349119 creator A5083669277 @default.
- W2955349119 creator A5085019265 @default.
- W2955349119 date "2019-10-01" @default.
- W2955349119 modified "2023-10-17" @default.
- W2955349119 title "Glycerol dialkyl glycerol tetraethers (GDGTs) in high latitude Siberian permafrost: Diversity, environmental controls, and implications for proxy applications" @default.
- W2955349119 cites W1415728936 @default.
- W2955349119 cites W1521210815 @default.
- W2955349119 cites W1630237164 @default.
- W2955349119 cites W1673135679 @default.
- W2955349119 cites W1816023022 @default.
- W2955349119 cites W1822978367 @default.
- W2955349119 cites W1828149165 @default.
- W2955349119 cites W1922469405 @default.
- W2955349119 cites W1953655759 @default.
- W2955349119 cites W1975272609 @default.
- W2955349119 cites W1975484444 @default.
- W2955349119 cites W1989454172 @default.
- W2955349119 cites W2005832186 @default.
- W2955349119 cites W2016242442 @default.
- W2955349119 cites W2022866472 @default.
- W2955349119 cites W2028837171 @default.
- W2955349119 cites W2030434408 @default.
- W2955349119 cites W2039241188 @default.
- W2955349119 cites W2039307206 @default.
- W2955349119 cites W2044420278 @default.
- W2955349119 cites W2052529373 @default.
- W2955349119 cites W2061374328 @default.
- W2955349119 cites W2064835851 @default.
- W2955349119 cites W2065814234 @default.
- W2955349119 cites W2072762503 @default.
- W2955349119 cites W2079087497 @default.
- W2955349119 cites W2082810157 @default.
- W2955349119 cites W2090206935 @default.
- W2955349119 cites W2092705479 @default.
- W2955349119 cites W2098627306 @default.
- W2955349119 cites W2099440591 @default.
- W2955349119 cites W2102207497 @default.
- W2955349119 cites W2104208100 @default.
- W2955349119 cites W2106491607 @default.
- W2955349119 cites W2107236158 @default.
- W2955349119 cites W2111829123 @default.
- W2955349119 cites W2120460465 @default.
- W2955349119 cites W2120560331 @default.
- W2955349119 cites W2120997712 @default.
- W2955349119 cites W2128974076 @default.
- W2955349119 cites W2131661856 @default.
- W2955349119 cites W2134817791 @default.
- W2955349119 cites W2138755654 @default.
- W2955349119 cites W2147199223 @default.
- W2955349119 cites W2149255324 @default.
- W2955349119 cites W2151815565 @default.
- W2955349119 cites W2154936985 @default.
- W2955349119 cites W2166717214 @default.
- W2955349119 cites W2166978652 @default.
- W2955349119 cites W2170315337 @default.
- W2955349119 cites W2192200867 @default.
- W2955349119 cites W2221717039 @default.
- W2955349119 cites W2327944470 @default.
- W2955349119 cites W2336317509 @default.
- W2955349119 cites W2342633710 @default.
- W2955349119 cites W2409860713 @default.
- W2955349119 cites W2422582572 @default.
- W2955349119 cites W2435615308 @default.
- W2955349119 cites W2464603569 @default.
- W2955349119 cites W2501455830 @default.
- W2955349119 cites W2526730654 @default.
- W2955349119 cites W2527522174 @default.
- W2955349119 cites W2550665768 @default.
- W2955349119 cites W2573352162 @default.
- W2955349119 cites W2575838082 @default.
- W2955349119 cites W2763553538 @default.
- W2955349119 cites W2767606047 @default.
- W2955349119 cites W2781839884 @default.
- W2955349119 cites W2795526805 @default.
- W2955349119 cites W2887255624 @default.
- W2955349119 cites W637288492 @default.
- W2955349119 doi "https://doi.org/10.1016/j.orggeochem.2019.06.009" @default.
- W2955349119 hasPublicationYear "2019" @default.
- W2955349119 type Work @default.
- W2955349119 sameAs 2955349119 @default.
- W2955349119 citedByCount "15" @default.
- W2955349119 countsByYear W29553491192021 @default.
- W2955349119 countsByYear W29553491192022 @default.
- W2955349119 countsByYear W29553491192023 @default.
- W2955349119 crossrefType "journal-article" @default.
- W2955349119 hasAuthorship W2955349119A5009728940 @default.
- W2955349119 hasAuthorship W2955349119A5026116878 @default.
- W2955349119 hasAuthorship W2955349119A5048134394 @default.
- W2955349119 hasAuthorship W2955349119A5056396556 @default.
- W2955349119 hasAuthorship W2955349119A5078966303 @default.
- W2955349119 hasAuthorship W2955349119A5083669277 @default.