Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955362251> ?p ?o ?g. }
- W2955362251 endingPage "1748" @default.
- W2955362251 startingPage "1739" @default.
- W2955362251 abstract "Fault feature extraction based on prior knowledge and raw data is increasingly becoming more challenging in energy Internet fault diagnosis due to complicated network topology and coupling disturbances introduced into the systems. Deep learning methods that have emerged in recent years, such as the convolutional neural networks (CNNs), have shown a number of advantages and great potentials in the field of feature extraction and image recognition. However, CNNs does not work well in fault diagnosis for industrial systems, due to the totally different data representations between images used in recognition and signals obtained from industrial processes. This paper tackles this problem by introducing a novel and generic fault diagnosis method for complicated system, namely, the Spearman rank correlation-based CNNs (SR-CNNs). By imposing the Spearman rank correlation image layer on the typical CNNs, the multiple time-series signals measured by the phasor measurement units (PMUs) is converted to appropriate data images, which are then fed to the CNNs. With the aid of this novel design, different fault features can be comprehensively extracted while the fault can be identified more quickly and precisely than other conventional approaches. To validate the efficacy of the proposed approach, an IEEE defined power gird with many new energy resources are used as the test platform. The experimental results confirm the effectiveness and superiority of the proposed method in energy Internet fault diagnosis over conventional methods." @default.
- W2955362251 created "2019-07-12" @default.
- W2955362251 creator A5003463660 @default.
- W2955362251 creator A5031576307 @default.
- W2955362251 creator A5043486930 @default.
- W2955362251 creator A5086887025 @default.
- W2955362251 date "2019-08-01" @default.
- W2955362251 modified "2023-10-02" @default.
- W2955362251 title "Fault Diagnosis for Energy Internet Using Correlation Processing-Based Convolutional Neural Networks" @default.
- W2955362251 cites W1597576211 @default.
- W2955362251 cites W1973176617 @default.
- W2955362251 cites W1983782700 @default.
- W2955362251 cites W1991907411 @default.
- W2955362251 cites W2015785348 @default.
- W2955362251 cites W2022731643 @default.
- W2955362251 cites W2045612479 @default.
- W2955362251 cites W2071164830 @default.
- W2955362251 cites W2076063813 @default.
- W2955362251 cites W2105049517 @default.
- W2955362251 cites W2126584714 @default.
- W2955362251 cites W2161750299 @default.
- W2955362251 cites W2316826306 @default.
- W2955362251 cites W2332885598 @default.
- W2955362251 cites W2404692435 @default.
- W2955362251 cites W2471159162 @default.
- W2955362251 cites W2488793141 @default.
- W2955362251 cites W2535680674 @default.
- W2955362251 cites W2555062391 @default.
- W2955362251 cites W2562762876 @default.
- W2955362251 cites W2587837328 @default.
- W2955362251 cites W2614839472 @default.
- W2955362251 cites W2621205740 @default.
- W2955362251 cites W2728631186 @default.
- W2955362251 cites W2732126315 @default.
- W2955362251 cites W2741060909 @default.
- W2955362251 cites W2754843652 @default.
- W2955362251 cites W2762841298 @default.
- W2955362251 cites W2768753204 @default.
- W2955362251 cites W2768866948 @default.
- W2955362251 cites W2789904726 @default.
- W2955362251 cites W2795835059 @default.
- W2955362251 cites W2808496542 @default.
- W2955362251 cites W2897772777 @default.
- W2955362251 cites W316295687 @default.
- W2955362251 cites W4230531457 @default.
- W2955362251 doi "https://doi.org/10.1109/tsmc.2019.2919940" @default.
- W2955362251 hasPublicationYear "2019" @default.
- W2955362251 type Work @default.
- W2955362251 sameAs 2955362251 @default.
- W2955362251 citedByCount "50" @default.
- W2955362251 countsByYear W29553622512019 @default.
- W2955362251 countsByYear W29553622512020 @default.
- W2955362251 countsByYear W29553622512021 @default.
- W2955362251 countsByYear W29553622512022 @default.
- W2955362251 countsByYear W29553622512023 @default.
- W2955362251 crossrefType "journal-article" @default.
- W2955362251 hasAuthorship W2955362251A5003463660 @default.
- W2955362251 hasAuthorship W2955362251A5031576307 @default.
- W2955362251 hasAuthorship W2955362251A5043486930 @default.
- W2955362251 hasAuthorship W2955362251A5086887025 @default.
- W2955362251 hasBestOaLocation W29553622512 @default.
- W2955362251 hasConcept C105795698 @default.
- W2955362251 hasConcept C119857082 @default.
- W2955362251 hasConcept C121332964 @default.
- W2955362251 hasConcept C124101348 @default.
- W2955362251 hasConcept C127313418 @default.
- W2955362251 hasConcept C138885662 @default.
- W2955362251 hasConcept C153180895 @default.
- W2955362251 hasConcept C154945302 @default.
- W2955362251 hasConcept C163258240 @default.
- W2955362251 hasConcept C165205528 @default.
- W2955362251 hasConcept C175551986 @default.
- W2955362251 hasConcept C176605952 @default.
- W2955362251 hasConcept C186370098 @default.
- W2955362251 hasConcept C2776401178 @default.
- W2955362251 hasConcept C33923547 @default.
- W2955362251 hasConcept C41008148 @default.
- W2955362251 hasConcept C41895202 @default.
- W2955362251 hasConcept C52622490 @default.
- W2955362251 hasConcept C62520636 @default.
- W2955362251 hasConcept C81363708 @default.
- W2955362251 hasConcept C89227174 @default.
- W2955362251 hasConceptScore W2955362251C105795698 @default.
- W2955362251 hasConceptScore W2955362251C119857082 @default.
- W2955362251 hasConceptScore W2955362251C121332964 @default.
- W2955362251 hasConceptScore W2955362251C124101348 @default.
- W2955362251 hasConceptScore W2955362251C127313418 @default.
- W2955362251 hasConceptScore W2955362251C138885662 @default.
- W2955362251 hasConceptScore W2955362251C153180895 @default.
- W2955362251 hasConceptScore W2955362251C154945302 @default.
- W2955362251 hasConceptScore W2955362251C163258240 @default.
- W2955362251 hasConceptScore W2955362251C165205528 @default.
- W2955362251 hasConceptScore W2955362251C175551986 @default.
- W2955362251 hasConceptScore W2955362251C176605952 @default.
- W2955362251 hasConceptScore W2955362251C186370098 @default.
- W2955362251 hasConceptScore W2955362251C2776401178 @default.
- W2955362251 hasConceptScore W2955362251C33923547 @default.
- W2955362251 hasConceptScore W2955362251C41008148 @default.