Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955394818> ?p ?o ?g. }
- W2955394818 endingPage "228" @default.
- W2955394818 startingPage "214" @default.
- W2955394818 abstract "The design of a control algorithm is difficult when models are unavailable, the physics are varying in time, or structural uncertainties are involved. One such case is an oil production platform in which reservoir conditions and the composition of the multiphase flow are not precisely known. Today, with streams of data generated from sensors, black-box adaptive control emerged as an alternative to control such systems. In this work, we employed an online adaptive controller based on Echo State Networks (ESNs) in diverse scenarios of controlling an oil production platform. The ESN learns an inverse model of the plant from which a control law is derived to attain set-point tracking of a simulated model. The analysis considers high steady-state gains, potentially unstable conditions, and a multi-variate control structure. All in all, this work contributes to the literature by demonstrating that online-learning control can be effective in highly complex dynamic systems (oil production platforms) devoid of suitable models, and with multiple inputs and outputs." @default.
- W2955394818 created "2019-07-12" @default.
- W2955394818 creator A5013582031 @default.
- W2955394818 creator A5053429698 @default.
- W2955394818 creator A5065625026 @default.
- W2955394818 date "2019-10-01" @default.
- W2955394818 modified "2023-10-01" @default.
- W2955394818 title "Online learning control with Echo State Networks of an oil production platform" @default.
- W2955394818 cites W1825869920 @default.
- W2955394818 cites W1922335379 @default.
- W2955394818 cites W1963588905 @default.
- W2955394818 cites W1988449308 @default.
- W2955394818 cites W2001263627 @default.
- W2955394818 cites W2005708641 @default.
- W2955394818 cites W2023916470 @default.
- W2955394818 cites W2024805871 @default.
- W2955394818 cites W2029967456 @default.
- W2955394818 cites W2034936723 @default.
- W2955394818 cites W2036451492 @default.
- W2955394818 cites W2058804598 @default.
- W2955394818 cites W2066540100 @default.
- W2955394818 cites W2077192280 @default.
- W2955394818 cites W2086194894 @default.
- W2955394818 cites W2096837006 @default.
- W2955394818 cites W2103179919 @default.
- W2955394818 cites W2103442863 @default.
- W2955394818 cites W2111072639 @default.
- W2955394818 cites W2118706537 @default.
- W2955394818 cites W2121200807 @default.
- W2955394818 cites W2143931733 @default.
- W2955394818 cites W2150355110 @default.
- W2955394818 cites W2167701780 @default.
- W2955394818 cites W2168634069 @default.
- W2955394818 cites W2197923813 @default.
- W2955394818 cites W2528283026 @default.
- W2955394818 cites W2528788999 @default.
- W2955394818 cites W2596760110 @default.
- W2955394818 cites W2755508311 @default.
- W2955394818 cites W2758626528 @default.
- W2955394818 cites W2883268783 @default.
- W2955394818 cites W2884156131 @default.
- W2955394818 doi "https://doi.org/10.1016/j.engappai.2019.06.011" @default.
- W2955394818 hasPublicationYear "2019" @default.
- W2955394818 type Work @default.
- W2955394818 sameAs 2955394818 @default.
- W2955394818 citedByCount "16" @default.
- W2955394818 countsByYear W29553948182020 @default.
- W2955394818 countsByYear W29553948182021 @default.
- W2955394818 countsByYear W29553948182022 @default.
- W2955394818 countsByYear W29553948182023 @default.
- W2955394818 crossrefType "journal-article" @default.
- W2955394818 hasAuthorship W2955394818A5013582031 @default.
- W2955394818 hasAuthorship W2955394818A5053429698 @default.
- W2955394818 hasAuthorship W2955394818A5065625026 @default.
- W2955394818 hasConcept C119599485 @default.
- W2955394818 hasConcept C127413603 @default.
- W2955394818 hasConcept C133731056 @default.
- W2955394818 hasConcept C135796866 @default.
- W2955394818 hasConcept C139719470 @default.
- W2955394818 hasConcept C147168706 @default.
- W2955394818 hasConcept C154945302 @default.
- W2955394818 hasConcept C162324750 @default.
- W2955394818 hasConcept C17500928 @default.
- W2955394818 hasConcept C177264268 @default.
- W2955394818 hasConcept C18762648 @default.
- W2955394818 hasConcept C199360897 @default.
- W2955394818 hasConcept C203479927 @default.
- W2955394818 hasConcept C2775924081 @default.
- W2955394818 hasConcept C2778348673 @default.
- W2955394818 hasConcept C2779426996 @default.
- W2955394818 hasConcept C2984309096 @default.
- W2955394818 hasConcept C31258907 @default.
- W2955394818 hasConcept C38858127 @default.
- W2955394818 hasConcept C41008148 @default.
- W2955394818 hasConcept C50644808 @default.
- W2955394818 hasConcept C6557445 @default.
- W2955394818 hasConcept C78519656 @default.
- W2955394818 hasConcept C78762247 @default.
- W2955394818 hasConcept C86803240 @default.
- W2955394818 hasConcept C94966114 @default.
- W2955394818 hasConceptScore W2955394818C119599485 @default.
- W2955394818 hasConceptScore W2955394818C127413603 @default.
- W2955394818 hasConceptScore W2955394818C133731056 @default.
- W2955394818 hasConceptScore W2955394818C135796866 @default.
- W2955394818 hasConceptScore W2955394818C139719470 @default.
- W2955394818 hasConceptScore W2955394818C147168706 @default.
- W2955394818 hasConceptScore W2955394818C154945302 @default.
- W2955394818 hasConceptScore W2955394818C162324750 @default.
- W2955394818 hasConceptScore W2955394818C17500928 @default.
- W2955394818 hasConceptScore W2955394818C177264268 @default.
- W2955394818 hasConceptScore W2955394818C18762648 @default.
- W2955394818 hasConceptScore W2955394818C199360897 @default.
- W2955394818 hasConceptScore W2955394818C203479927 @default.
- W2955394818 hasConceptScore W2955394818C2775924081 @default.
- W2955394818 hasConceptScore W2955394818C2778348673 @default.
- W2955394818 hasConceptScore W2955394818C2779426996 @default.
- W2955394818 hasConceptScore W2955394818C2984309096 @default.
- W2955394818 hasConceptScore W2955394818C31258907 @default.