Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955412401> ?p ?o ?g. }
- W2955412401 endingPage "R1001" @default.
- W2955412401 startingPage "R989" @default.
- W2955412401 abstract "Low-frequency seismic data are crucial for convergence of full-waveform inversion (FWI) to reliable subsurface properties. However, it is challenging to acquire field data with an appropriate signal-to-noise ratio in the low-frequency part of the spectrum. We have extrapolated low-frequency data from the respective higher frequency components of the seismic wavefield by using deep learning. Through wavenumber analysis, we find that extrapolation per shot gather has broader applicability than per-trace extrapolation. We numerically simulate marine seismic surveys for random subsurface models and train a deep convolutional neural network to derive a mapping between high and low frequencies. The trained network is then tested on sections from the BP and SEAM Phase I benchmark models. Our results indicate that we are able to recover 0.25 Hz data from the 2 to 4.5 Hz frequencies. We also determine that the extrapolated data are accurate enough for FWI application." @default.
- W2955412401 created "2019-07-12" @default.
- W2955412401 creator A5006190361 @default.
- W2955412401 creator A5006480587 @default.
- W2955412401 creator A5032021877 @default.
- W2955412401 creator A5034973010 @default.
- W2955412401 creator A5090324356 @default.
- W2955412401 date "2019-11-01" @default.
- W2955412401 modified "2023-10-15" @default.
- W2955412401 title "Deep learning for low-frequency extrapolation from multioffset seismic data" @default.
- W2955412401 cites W1125436246 @default.
- W2955412401 cites W1607872981 @default.
- W2955412401 cites W1903160458 @default.
- W2955412401 cites W1971064830 @default.
- W2955412401 cites W1984741648 @default.
- W2955412401 cites W2009552164 @default.
- W2955412401 cites W2043053721 @default.
- W2955412401 cites W2068777106 @default.
- W2955412401 cites W2076063813 @default.
- W2955412401 cites W2096224415 @default.
- W2955412401 cites W2097117768 @default.
- W2955412401 cites W2101027232 @default.
- W2955412401 cites W2108174537 @default.
- W2955412401 cites W2110039350 @default.
- W2955412401 cites W2111406701 @default.
- W2955412401 cites W2119762231 @default.
- W2955412401 cites W2122617949 @default.
- W2955412401 cites W2139381422 @default.
- W2955412401 cites W2150240527 @default.
- W2955412401 cites W2166525224 @default.
- W2955412401 cites W2292089642 @default.
- W2955412401 cites W2316322413 @default.
- W2955412401 cites W2324517061 @default.
- W2955412401 cites W2327263483 @default.
- W2955412401 cites W2504830112 @default.
- W2955412401 cites W2511851680 @default.
- W2955412401 cites W2518275436 @default.
- W2955412401 cites W2585331105 @default.
- W2955412401 cites W2617132647 @default.
- W2955412401 cites W2617882835 @default.
- W2955412401 cites W2746315236 @default.
- W2955412401 cites W2749056081 @default.
- W2955412401 cites W2763634102 @default.
- W2955412401 cites W2776585113 @default.
- W2955412401 cites W2785795994 @default.
- W2955412401 cites W2789376704 @default.
- W2955412401 cites W2791406157 @default.
- W2955412401 cites W280097639 @default.
- W2955412401 cites W2804494384 @default.
- W2955412401 cites W2809878356 @default.
- W2955412401 cites W2886991536 @default.
- W2955412401 cites W2891510963 @default.
- W2955412401 cites W2891621213 @default.
- W2955412401 cites W2891727716 @default.
- W2955412401 cites W2891749414 @default.
- W2955412401 cites W2896901590 @default.
- W2955412401 cites W2911424749 @default.
- W2955412401 cites W2914823537 @default.
- W2955412401 cites W2933456541 @default.
- W2955412401 cites W2945511762 @default.
- W2955412401 cites W2953182346 @default.
- W2955412401 cites W2955412401 @default.
- W2955412401 cites W2963775778 @default.
- W2955412401 cites W2963892938 @default.
- W2955412401 cites W2966618135 @default.
- W2955412401 cites W2968260241 @default.
- W2955412401 cites W2968585572 @default.
- W2955412401 cites W2968806168 @default.
- W2955412401 cites W2970975354 @default.
- W2955412401 cites W2971238867 @default.
- W2955412401 cites W4255949318 @default.
- W2955412401 cites W2516914564 @default.
- W2955412401 doi "https://doi.org/10.1190/geo2018-0884.1" @default.
- W2955412401 hasPublicationYear "2019" @default.
- W2955412401 type Work @default.
- W2955412401 sameAs 2955412401 @default.
- W2955412401 citedByCount "108" @default.
- W2955412401 countsByYear W29554124012019 @default.
- W2955412401 countsByYear W29554124012020 @default.
- W2955412401 countsByYear W29554124012021 @default.
- W2955412401 countsByYear W29554124012022 @default.
- W2955412401 countsByYear W29554124012023 @default.
- W2955412401 crossrefType "journal-article" @default.
- W2955412401 hasAuthorship W2955412401A5006190361 @default.
- W2955412401 hasAuthorship W2955412401A5006480587 @default.
- W2955412401 hasAuthorship W2955412401A5032021877 @default.
- W2955412401 hasAuthorship W2955412401A5034973010 @default.
- W2955412401 hasAuthorship W2955412401A5090324356 @default.
- W2955412401 hasBestOaLocation W29554124012 @default.
- W2955412401 hasConcept C104892082 @default.
- W2955412401 hasConcept C105795698 @default.
- W2955412401 hasConcept C108583219 @default.
- W2955412401 hasConcept C11413529 @default.
- W2955412401 hasConcept C127313418 @default.
- W2955412401 hasConcept C132459708 @default.
- W2955412401 hasConcept C13280743 @default.
- W2955412401 hasConcept C154945302 @default.
- W2955412401 hasConcept C165205528 @default.