Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955420986> ?p ?o ?g. }
- W2955420986 endingPage "1034" @default.
- W2955420986 startingPage "1029" @default.
- W2955420986 abstract "Precis: Pegasus outperformed 5 of the 6 ophthalmologists in terms of diagnostic performance, and there was no statistically significant difference between the deep learning system and the “best case” consensus between the ophthalmologists. The agreement between Pegasus and gold standard was 0.715, whereas the highest ophthalmologist agreement with the gold standard was 0.613. Furthermore, the high sensitivity of Pegasus makes it a valuable tool for screening patients with glaucomatous optic neuropathy. Purpose: The purpose of this study was to evaluate the performance of a deep learning system for the identification of glaucomatous optic neuropathy. Materials and Methods: Six ophthalmologists and the deep learning system, Pegasus, graded 110 color fundus photographs in this retrospective single-center study. Patient images were randomly sampled from the Singapore Malay Eye Study. Ophthalmologists and Pegasus were compared with each other and to the original clinical diagnosis given by the Singapore Malay Eye Study, which was defined as the gold standard. Pegasus’ performance was compared with the “best case” consensus scenario, which was the combination of ophthalmologists whose consensus opinion most closely matched the gold standard. The performance of the ophthalmologists and Pegasus, at the binary classification of nonglaucoma versus glaucoma from fundus photographs, was assessed in terms of sensitivity, specificity and the area under the receiver operating characteristic curve (AUROC), and the intraobserver and interobserver agreements were determined. Results: Pegasus achieved an AUROC of 92.6% compared with ophthalmologist AUROCs that ranged from 69.6% to 84.9% and the “best case” consensus scenario AUROC of 89.1%. Pegasus had a sensitivity of 83.7% and a specificity of 88.2%, whereas the ophthalmologists’ sensitivity ranged from 61.3% to 81.6% and specificity ranged from 80.0% to 94.1%. The agreement between Pegasus and gold standard was 0.715, whereas the highest ophthalmologist agreement with the gold standard was 0.613. Intraobserver agreement ranged from 0.62 to 0.97 for ophthalmologists and was perfect (1.00) for Pegasus. The deep learning system took ∼10% of the time of the ophthalmologists in determining classification. Conclusions: Pegasus outperformed 5 of the 6 ophthalmologists in terms of diagnostic performance, and there was no statistically significant difference between the deep learning system and the “best case” consensus between the ophthalmologists. The high sensitivity of Pegasus makes it a valuable tool for screening patients with glaucomatous optic neuropathy. Future work will extend this study to a larger sample of patients." @default.
- W2955420986 created "2019-07-12" @default.
- W2955420986 creator A5023190144 @default.
- W2955420986 creator A5023667297 @default.
- W2955420986 creator A5034393936 @default.
- W2955420986 creator A5037027602 @default.
- W2955420986 creator A5040850780 @default.
- W2955420986 creator A5051728798 @default.
- W2955420986 creator A5052750591 @default.
- W2955420986 creator A5053293988 @default.
- W2955420986 creator A5054334699 @default.
- W2955420986 creator A5062842536 @default.
- W2955420986 creator A5063323539 @default.
- W2955420986 creator A5073224953 @default.
- W2955420986 creator A5086773074 @default.
- W2955420986 date "2019-06-21" @default.
- W2955420986 modified "2023-10-02" @default.
- W2955420986 title "Evaluation of a Deep Learning System For Identifying Glaucomatous Optic Neuropathy Based on Color Fundus Photographs" @default.
- W2955420986 cites W2019818855 @default.
- W2955420986 cites W2149903987 @default.
- W2955420986 cites W2160605010 @default.
- W2955420986 cites W2168889968 @default.
- W2955420986 cites W2327037637 @default.
- W2955420986 cites W2328176404 @default.
- W2955420986 cites W2394656367 @default.
- W2955420986 cites W2652404249 @default.
- W2955420986 cites W2766593955 @default.
- W2955420986 cites W2792026451 @default.
- W2955420986 cites W2809787027 @default.
- W2955420986 cites W2893356526 @default.
- W2955420986 cites W2893458693 @default.
- W2955420986 cites W2899951262 @default.
- W2955420986 doi "https://doi.org/10.1097/ijg.0000000000001319" @default.
- W2955420986 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31233461" @default.
- W2955420986 hasPublicationYear "2019" @default.
- W2955420986 type Work @default.
- W2955420986 sameAs 2955420986 @default.
- W2955420986 citedByCount "28" @default.
- W2955420986 countsByYear W29554209862019 @default.
- W2955420986 countsByYear W29554209862020 @default.
- W2955420986 countsByYear W29554209862021 @default.
- W2955420986 countsByYear W29554209862022 @default.
- W2955420986 countsByYear W29554209862023 @default.
- W2955420986 crossrefType "journal-article" @default.
- W2955420986 hasAuthorship W2955420986A5023190144 @default.
- W2955420986 hasAuthorship W2955420986A5023667297 @default.
- W2955420986 hasAuthorship W2955420986A5034393936 @default.
- W2955420986 hasAuthorship W2955420986A5037027602 @default.
- W2955420986 hasAuthorship W2955420986A5040850780 @default.
- W2955420986 hasAuthorship W2955420986A5051728798 @default.
- W2955420986 hasAuthorship W2955420986A5052750591 @default.
- W2955420986 hasAuthorship W2955420986A5053293988 @default.
- W2955420986 hasAuthorship W2955420986A5054334699 @default.
- W2955420986 hasAuthorship W2955420986A5062842536 @default.
- W2955420986 hasAuthorship W2955420986A5063323539 @default.
- W2955420986 hasAuthorship W2955420986A5073224953 @default.
- W2955420986 hasAuthorship W2955420986A5086773074 @default.
- W2955420986 hasBestOaLocation W29554209861 @default.
- W2955420986 hasConcept C118487528 @default.
- W2955420986 hasConcept C119767625 @default.
- W2955420986 hasConcept C126322002 @default.
- W2955420986 hasConcept C126838900 @default.
- W2955420986 hasConcept C138885662 @default.
- W2955420986 hasConcept C2776391266 @default.
- W2955420986 hasConcept C2776938241 @default.
- W2955420986 hasConcept C2778233873 @default.
- W2955420986 hasConcept C2778527774 @default.
- W2955420986 hasConcept C2780837183 @default.
- W2955420986 hasConcept C40993552 @default.
- W2955420986 hasConcept C41895202 @default.
- W2955420986 hasConcept C58471807 @default.
- W2955420986 hasConcept C71924100 @default.
- W2955420986 hasConceptScore W2955420986C118487528 @default.
- W2955420986 hasConceptScore W2955420986C119767625 @default.
- W2955420986 hasConceptScore W2955420986C126322002 @default.
- W2955420986 hasConceptScore W2955420986C126838900 @default.
- W2955420986 hasConceptScore W2955420986C138885662 @default.
- W2955420986 hasConceptScore W2955420986C2776391266 @default.
- W2955420986 hasConceptScore W2955420986C2776938241 @default.
- W2955420986 hasConceptScore W2955420986C2778233873 @default.
- W2955420986 hasConceptScore W2955420986C2778527774 @default.
- W2955420986 hasConceptScore W2955420986C2780837183 @default.
- W2955420986 hasConceptScore W2955420986C40993552 @default.
- W2955420986 hasConceptScore W2955420986C41895202 @default.
- W2955420986 hasConceptScore W2955420986C58471807 @default.
- W2955420986 hasConceptScore W2955420986C71924100 @default.
- W2955420986 hasIssue "12" @default.
- W2955420986 hasLocation W29554209861 @default.
- W2955420986 hasLocation W29554209862 @default.
- W2955420986 hasLocation W29554209863 @default.
- W2955420986 hasOpenAccess W2955420986 @default.
- W2955420986 hasPrimaryLocation W29554209861 @default.
- W2955420986 hasRelatedWork W1503211735 @default.
- W2955420986 hasRelatedWork W1557990053 @default.
- W2955420986 hasRelatedWork W1971786882 @default.
- W2955420986 hasRelatedWork W2025723352 @default.
- W2955420986 hasRelatedWork W2386577478 @default.
- W2955420986 hasRelatedWork W2412448159 @default.