Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955425519> ?p ?o ?g. }
- W2955425519 abstract "This paper develops textual sentiment measures for China's stock market by extracting the textual tone of 60 million messages posted on a major online investor forum in China from 2008 to 2018. We conduct sentiment extraction by using both conventional dictionary methods based on customized word lists and supervised machine-learning methods (support vector machine and convolutional neural network). The market-level textual sentiment index is constructed as the average of message-level sentiment scores, and the textual disagreement index is constructed as their dispersion. These textual measures allow us to test a range of predictions of classical behavioral asset-pricing models within a unified empirical setting. We find that textual sentiment can significantly predict market return, exhibiting a salient underreaction-overreaction pattern on a time scale of several months. This effect is more pronounced for small and growth stocks, and is stronger under higher investor attention and during more volatile periods. We also find that textual sentiment exerts a significant and asymmetric impact on future volatility. Finally, we show that trading volume will be higher when textual sentiment is unusually high or low and when there are more differences of opinion, as measured by our textual disagreement. Based on a massive textual dataset, our analysis provides support for the noise-trading theory and the limits-to-arbitrage argument, as well as predictions from limited-attention and disagreement models." @default.
- W2955425519 created "2019-07-12" @default.
- W2955425519 creator A5009267236 @default.
- W2955425519 creator A5020513307 @default.
- W2955425519 creator A5043083103 @default.
- W2955425519 creator A5064510629 @default.
- W2955425519 creator A5066909782 @default.
- W2955425519 date "2019-01-01" @default.
- W2955425519 modified "2023-09-23" @default.
- W2955425519 title "Measuring China's Stock Market Sentiment" @default.
- W2955425519 cites W1568329098 @default.
- W2955425519 cites W1654142532 @default.
- W2955425519 cites W1979575715 @default.
- W2955425519 cites W1999814123 @default.
- W2955425519 cites W1999996900 @default.
- W2955425519 cites W2012679794 @default.
- W2955425519 cites W2016909185 @default.
- W2955425519 cites W2031796872 @default.
- W2955425519 cites W2033815796 @default.
- W2955425519 cites W2050031929 @default.
- W2955425519 cites W2050643653 @default.
- W2955425519 cites W2066815740 @default.
- W2955425519 cites W2101194190 @default.
- W2955425519 cites W2106622011 @default.
- W2955425519 cites W2110752212 @default.
- W2955425519 cites W2112796928 @default.
- W2955425519 cites W2125520394 @default.
- W2955425519 cites W2128633294 @default.
- W2955425519 cites W2128965010 @default.
- W2955425519 cites W2137983211 @default.
- W2955425519 cites W2143612262 @default.
- W2955425519 cites W2144487825 @default.
- W2955425519 cites W2146134639 @default.
- W2955425519 cites W2156909104 @default.
- W2955425519 cites W2157403008 @default.
- W2955425519 cites W2162617939 @default.
- W2955425519 cites W2167926373 @default.
- W2955425519 cites W2178225550 @default.
- W2955425519 cites W2487770199 @default.
- W2955425519 cites W2499063677 @default.
- W2955425519 cites W2554619162 @default.
- W2955425519 cites W2618530766 @default.
- W2955425519 cites W2625464253 @default.
- W2955425519 cites W2762067682 @default.
- W2955425519 cites W2785299472 @default.
- W2955425519 cites W2891649320 @default.
- W2955425519 cites W2895562402 @default.
- W2955425519 cites W2919115771 @default.
- W2955425519 cites W3121364726 @default.
- W2955425519 cites W3121467893 @default.
- W2955425519 cites W3121512573 @default.
- W2955425519 cites W3122136669 @default.
- W2955425519 cites W3122183745 @default.
- W2955425519 cites W3122264531 @default.
- W2955425519 cites W3122431760 @default.
- W2955425519 cites W3122578644 @default.
- W2955425519 cites W3122648113 @default.
- W2955425519 cites W3122727604 @default.
- W2955425519 cites W3122817124 @default.
- W2955425519 cites W3122843332 @default.
- W2955425519 cites W3122944446 @default.
- W2955425519 cites W3123118666 @default.
- W2955425519 cites W3123195209 @default.
- W2955425519 cites W3123661710 @default.
- W2955425519 cites W3123671626 @default.
- W2955425519 cites W3124948273 @default.
- W2955425519 cites W3124986135 @default.
- W2955425519 cites W3125952890 @default.
- W2955425519 cites W3126053622 @default.
- W2955425519 cites W3126081245 @default.
- W2955425519 cites W4230964176 @default.
- W2955425519 cites W4231686357 @default.
- W2955425519 cites W4233731957 @default.
- W2955425519 cites W4234857727 @default.
- W2955425519 cites W4239806463 @default.
- W2955425519 cites W4240205250 @default.
- W2955425519 cites W4241589022 @default.
- W2955425519 cites W4241923419 @default.
- W2955425519 cites W4249521496 @default.
- W2955425519 cites W4255461888 @default.
- W2955425519 cites W4292157289 @default.
- W2955425519 cites W4297964220 @default.
- W2955425519 doi "https://doi.org/10.2139/ssrn.3377684" @default.
- W2955425519 hasPublicationYear "2019" @default.
- W2955425519 type Work @default.
- W2955425519 sameAs 2955425519 @default.
- W2955425519 citedByCount "5" @default.
- W2955425519 countsByYear W29554255192019 @default.
- W2955425519 countsByYear W29554255192021 @default.
- W2955425519 countsByYear W29554255192022 @default.
- W2955425519 crossrefType "journal-article" @default.
- W2955425519 hasAuthorship W2955425519A5009267236 @default.
- W2955425519 hasAuthorship W2955425519A5020513307 @default.
- W2955425519 hasAuthorship W2955425519A5043083103 @default.
- W2955425519 hasAuthorship W2955425519A5064510629 @default.
- W2955425519 hasAuthorship W2955425519A5066909782 @default.
- W2955425519 hasConcept C106159729 @default.
- W2955425519 hasConcept C144133560 @default.
- W2955425519 hasConcept C162324750 @default.
- W2955425519 hasConcept C166957645 @default.