Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955446717> ?p ?o ?g. }
- W2955446717 endingPage "1967" @default.
- W2955446717 startingPage "1957" @default.
- W2955446717 abstract "The predictable and controllable interaction of small organic or peptidic molecules with biological substrates is the primary reason most pharmaceuticals are narrowly decorated carbon frameworks. The inhibition or activation binding models are measurable and without side reactions that can cause pathological angst. Yet many diseases, especially those involving rapid proliferation of cells (i.e., cancer) or aggregation of peptides (e.g., heart disease, Alzheimer's disease) have not yet been cured by inhibition therapeutics. Additionally, interventional medicine is often required to alleviate such maladies by physical removal first, followed by molecular-level therapy as a second stage. Thus, there appears to be a niche for more aggressive therapeutics that may employ harsher chemical processes to realize clinical efficacy, albeit without causing catastrophic side effects. Molecules that may be considered for this challenge are not typically biomimetic, nor do they fit the traditional pharmaceutical paradigm. They may have unusual modes of action or undesired reactivity that can be lethal if not controlled. These are the outliers; potential pharmacophores that biology does not know how to manage or adapt to. This is why they may be an intriguing class of agents that needs continuous development. In this Account, we connect the under-developed enediyne family of compounds and our metalloenediyne derivatives to existing radical-based therapeutics such as bleomycin and doxorubicin to illustrate that controlled diradical reactivity, although an outlier mechanism, has a place in the therapeutic portfolio. This is self-evident in that of the 11 natural product enediynes known, 2 have clinical impact, a strong ratio. We expand on the chemical diversity of potential enediyne constructs and focus on the accessible trigger mechanisms to activate diradical formation as a method to control toxicity. Moreover, we further illustrate how electromagnetic fields can be employed to activate both molecular and larger nanomaterial constructs that carry highly concentrated payloads of reactive reagent. Finally, we describe how controlled diradical reactivity can reach beyond traditional therapeutic targets such as DNA, to peptide aggregates found in blood clots, neural fibrils, and membrane scaffolds. It is our belief that cleverly constructed frameworks with well-designed and controlled activation/reaction schemes can lead to novel therapeutics that can challenge evolving viral and bacterial invaders. From this evangelical perspective, our hope is that the conceptual framework, if not the specific designs in this Account, stimulate the readership to develop out-of-the-box therapeutic designs that may combat resistant disease targets." @default.
- W2955446717 created "2019-07-12" @default.
- W2955446717 creator A5064625355 @default.
- W2955446717 creator A5083719065 @default.
- W2955446717 creator A5084323096 @default.
- W2955446717 date "2019-06-25" @default.
- W2955446717 modified "2023-09-23" @default.
- W2955446717 title "The Outliers: Metal-Mediated Radical Reagents for Biological Substrate Degradation" @default.
- W2955446717 cites W1935781191 @default.
- W2955446717 cites W1964773075 @default.
- W2955446717 cites W1978438460 @default.
- W2955446717 cites W1978805924 @default.
- W2955446717 cites W1980948034 @default.
- W2955446717 cites W1983458506 @default.
- W2955446717 cites W1983515750 @default.
- W2955446717 cites W1984290843 @default.
- W2955446717 cites W1984807054 @default.
- W2955446717 cites W1986149387 @default.
- W2955446717 cites W1986952886 @default.
- W2955446717 cites W1987604182 @default.
- W2955446717 cites W2003759113 @default.
- W2955446717 cites W2006961468 @default.
- W2955446717 cites W2011033560 @default.
- W2955446717 cites W2021215119 @default.
- W2955446717 cites W2026984702 @default.
- W2955446717 cites W2029571935 @default.
- W2955446717 cites W2031075810 @default.
- W2955446717 cites W2031787401 @default.
- W2955446717 cites W2033536294 @default.
- W2955446717 cites W2033972881 @default.
- W2955446717 cites W2036211640 @default.
- W2955446717 cites W2039313593 @default.
- W2955446717 cites W2041530692 @default.
- W2955446717 cites W2043873747 @default.
- W2955446717 cites W2044335931 @default.
- W2955446717 cites W2054895572 @default.
- W2955446717 cites W2063168442 @default.
- W2955446717 cites W2065822072 @default.
- W2955446717 cites W2072685827 @default.
- W2955446717 cites W2073909060 @default.
- W2955446717 cites W2086034451 @default.
- W2955446717 cites W2089837236 @default.
- W2955446717 cites W2091218973 @default.
- W2955446717 cites W2093866819 @default.
- W2955446717 cites W2106301585 @default.
- W2955446717 cites W2121636835 @default.
- W2955446717 cites W2123585923 @default.
- W2955446717 cites W2125653641 @default.
- W2955446717 cites W2127914798 @default.
- W2955446717 cites W2133324295 @default.
- W2955446717 cites W2139683599 @default.
- W2955446717 cites W2156383762 @default.
- W2955446717 cites W2169429309 @default.
- W2955446717 cites W2301572923 @default.
- W2955446717 cites W2313142763 @default.
- W2955446717 cites W2321204801 @default.
- W2955446717 cites W2325855190 @default.
- W2955446717 cites W2328363033 @default.
- W2955446717 cites W2331225798 @default.
- W2955446717 cites W2335327790 @default.
- W2955446717 cites W2346482083 @default.
- W2955446717 cites W2346771578 @default.
- W2955446717 cites W2740321793 @default.
- W2955446717 cites W2781705943 @default.
- W2955446717 cites W2949262469 @default.
- W2955446717 cites W2953174157 @default.
- W2955446717 doi "https://doi.org/10.1021/acs.accounts.9b00185" @default.
- W2955446717 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31243967" @default.
- W2955446717 hasPublicationYear "2019" @default.
- W2955446717 type Work @default.
- W2955446717 sameAs 2955446717 @default.
- W2955446717 citedByCount "3" @default.
- W2955446717 countsByYear W29554467172019 @default.
- W2955446717 countsByYear W29554467172020 @default.
- W2955446717 countsByYear W29554467172022 @default.
- W2955446717 crossrefType "journal-article" @default.
- W2955446717 hasAuthorship W2955446717A5064625355 @default.
- W2955446717 hasAuthorship W2955446717A5083719065 @default.
- W2955446717 hasAuthorship W2955446717A5084323096 @default.
- W2955446717 hasBestOaLocation W29554467172 @default.
- W2955446717 hasConcept C111472728 @default.
- W2955446717 hasConcept C138885662 @default.
- W2955446717 hasConcept C142724271 @default.
- W2955446717 hasConcept C161624437 @default.
- W2955446717 hasConcept C185592680 @default.
- W2955446717 hasConcept C204787440 @default.
- W2955446717 hasConcept C21951064 @default.
- W2955446717 hasConcept C2776910235 @default.
- W2955446717 hasConcept C55493867 @default.
- W2955446717 hasConcept C56173144 @default.
- W2955446717 hasConcept C70721500 @default.
- W2955446717 hasConcept C71924100 @default.
- W2955446717 hasConcept C86803240 @default.
- W2955446717 hasConcept C89611455 @default.
- W2955446717 hasConceptScore W2955446717C111472728 @default.
- W2955446717 hasConceptScore W2955446717C138885662 @default.
- W2955446717 hasConceptScore W2955446717C142724271 @default.
- W2955446717 hasConceptScore W2955446717C161624437 @default.