Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955507174> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2955507174 abstract "The problem of inter-rater variability is often discussed in the context of manual labeling of medical images. It is assumed to be bypassed by automatic model-based approaches for image segmentation which are considered `objective', providing single, deterministic solutions. However, the emergence of data-driven approaches such as Deep Neural Networks (DNNs) and their application to supervised semantic segmentation - brought this issue of raters' disagreement back to the front-stage. In this paper, we highlight the issue of inter-rater bias as opposed to random inter-observer variability and demonstrate its influence on DNN training, leading to different segmentation results for the same input images. In fact, lower Dice scores are calculated if training and test segmentations are of different raters. Moreover, we demonstrate that inter-rater bias in the training examples is amplified when considering the segmentation predictions for the test data. We support our findings by showing that a classifier-DNN trained to distinguish between raters based on their manual annotations performs better when the automatic segmentation predictions rather than the raters' annotations were tested. For this study, we used the ISBI 2015 Multiple Sclerosis (MS) challenge dataset, which includes annotations by two raters with different levels of expertise. The results obtained allow us to underline a worrisome clinical implication of a DNN bias induced by an inter-rater bias during training. Specially, we show that the differences in MS-lesion load estimates increase when the volume calculations are done based on the DNNs' segmentation predictions instead of the manual annotations used for training." @default.
- W2955507174 created "2019-07-12" @default.
- W2955507174 creator A5018979483 @default.
- W2955507174 creator A5052481302 @default.
- W2955507174 creator A5073583312 @default.
- W2955507174 creator A5080407131 @default.
- W2955507174 date "2019-06-12" @default.
- W2955507174 modified "2023-09-27" @default.
- W2955507174 title "The Impact of an Inter-rater Bias on Neural Network Training" @default.
- W2955507174 cites W1901129140 @default.
- W2955507174 cites W1987869189 @default.
- W2955507174 cites W1997160662 @default.
- W2955507174 cites W2031466519 @default.
- W2955507174 cites W2148347694 @default.
- W2955507174 cites W2164255527 @default.
- W2955507174 cites W2304269960 @default.
- W2955507174 cites W2575552683 @default.
- W2955507174 cites W2592929672 @default.
- W2955507174 cites W2889615630 @default.
- W2955507174 cites W2890435066 @default.
- W2955507174 hasPublicationYear "2019" @default.
- W2955507174 type Work @default.
- W2955507174 sameAs 2955507174 @default.
- W2955507174 citedByCount "2" @default.
- W2955507174 countsByYear W29555071742021 @default.
- W2955507174 crossrefType "posted-content" @default.
- W2955507174 hasAuthorship W2955507174A5018979483 @default.
- W2955507174 hasAuthorship W2955507174A5052481302 @default.
- W2955507174 hasAuthorship W2955507174A5073583312 @default.
- W2955507174 hasAuthorship W2955507174A5080407131 @default.
- W2955507174 hasConcept C119857082 @default.
- W2955507174 hasConcept C153180895 @default.
- W2955507174 hasConcept C154945302 @default.
- W2955507174 hasConcept C16910744 @default.
- W2955507174 hasConcept C199360897 @default.
- W2955507174 hasConcept C2984842247 @default.
- W2955507174 hasConcept C41008148 @default.
- W2955507174 hasConcept C50644808 @default.
- W2955507174 hasConcept C89600930 @default.
- W2955507174 hasConcept C95623464 @default.
- W2955507174 hasConceptScore W2955507174C119857082 @default.
- W2955507174 hasConceptScore W2955507174C153180895 @default.
- W2955507174 hasConceptScore W2955507174C154945302 @default.
- W2955507174 hasConceptScore W2955507174C16910744 @default.
- W2955507174 hasConceptScore W2955507174C199360897 @default.
- W2955507174 hasConceptScore W2955507174C2984842247 @default.
- W2955507174 hasConceptScore W2955507174C41008148 @default.
- W2955507174 hasConceptScore W2955507174C50644808 @default.
- W2955507174 hasConceptScore W2955507174C89600930 @default.
- W2955507174 hasConceptScore W2955507174C95623464 @default.
- W2955507174 hasLocation W29555071741 @default.
- W2955507174 hasOpenAccess W2955507174 @default.
- W2955507174 hasPrimaryLocation W29555071741 @default.
- W2955507174 hasRelatedWork W1454443547 @default.
- W2955507174 hasRelatedWork W1510004025 @default.
- W2955507174 hasRelatedWork W1999384478 @default.
- W2955507174 hasRelatedWork W2275347887 @default.
- W2955507174 hasRelatedWork W2331370361 @default.
- W2955507174 hasRelatedWork W2606263377 @default.
- W2955507174 hasRelatedWork W2791273648 @default.
- W2955507174 hasRelatedWork W2921126761 @default.
- W2955507174 hasRelatedWork W2981022384 @default.
- W2955507174 hasRelatedWork W2991554866 @default.
- W2955507174 hasRelatedWork W3011067816 @default.
- W2955507174 hasRelatedWork W3030500365 @default.
- W2955507174 hasRelatedWork W3112344374 @default.
- W2955507174 hasRelatedWork W3148978299 @default.
- W2955507174 hasRelatedWork W3153572511 @default.
- W2955507174 hasRelatedWork W3159778263 @default.
- W2955507174 hasRelatedWork W3165367843 @default.
- W2955507174 hasRelatedWork W3184154495 @default.
- W2955507174 hasRelatedWork W3196018520 @default.
- W2955507174 hasRelatedWork W3201991715 @default.
- W2955507174 isParatext "false" @default.
- W2955507174 isRetracted "false" @default.
- W2955507174 magId "2955507174" @default.
- W2955507174 workType "article" @default.