Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955562824> ?p ?o ?g. }
- W2955562824 endingPage "188" @default.
- W2955562824 startingPage "161" @default.
- W2955562824 abstract "In this chapter, a swarm algorithm for global optimization called the Collective Animal Behavior (CAB) is introduced. The algorithm is based on animal groups, such as schools of fish, flocks of birds, swarms of locusts, and herds of wildebeest, that exhibit a variety of behaviors including swarming about a food source, milling around a central location or migrating over large distances in aligned groups. These collective behaviors are often advantageous to groups, allowing them to increase their harvesting efficiency, to follow better migration routes, to improve their aerodynamic and to avoid predation. In the presented algorithm in this chapter, the searcher agents emulate a group of animals which interact to each other based on the biological laws of collective motion. The optimization method presented in this chapter has been compared to other well-known optimization algorithms. The results, experiments and practical examples confirm the high performance of the presented method to find a global optimum of several benchmark functions." @default.
- W2955562824 created "2019-07-12" @default.
- W2955562824 creator A5000506517 @default.
- W2955562824 creator A5007814653 @default.
- W2955562824 creator A5079450474 @default.
- W2955562824 date "2019-04-03" @default.
- W2955562824 modified "2023-10-18" @default.
- W2955562824 title "A Swarm Algorithm Inspired by the Collective Animal Behavior" @default.
- W2955562824 cites W1549119093 @default.
- W2955562824 cites W1596195064 @default.
- W2955562824 cites W1881045119 @default.
- W2955562824 cites W1972462693 @default.
- W2955562824 cites W1974987571 @default.
- W2955562824 cites W1975107448 @default.
- W2955562824 cites W1976057335 @default.
- W2955562824 cites W1985334587 @default.
- W2955562824 cites W1990751833 @default.
- W2955562824 cites W1993885071 @default.
- W2955562824 cites W1997600725 @default.
- W2955562824 cites W2001471353 @default.
- W2955562824 cites W2024060531 @default.
- W2955562824 cites W2027985480 @default.
- W2955562824 cites W2037258733 @default.
- W2955562824 cites W2037730640 @default.
- W2955562824 cites W2047957002 @default.
- W2955562824 cites W2055735128 @default.
- W2955562824 cites W2056603712 @default.
- W2955562824 cites W2057348628 @default.
- W2955562824 cites W2065543187 @default.
- W2955562824 cites W2072955302 @default.
- W2955562824 cites W2075312106 @default.
- W2955562824 cites W2076352243 @default.
- W2955562824 cites W2091611288 @default.
- W2955562824 cites W2091936660 @default.
- W2955562824 cites W2094453630 @default.
- W2955562824 cites W2098106125 @default.
- W2955562824 cites W2103756561 @default.
- W2955562824 cites W2104747119 @default.
- W2955562824 cites W2105032691 @default.
- W2955562824 cites W2106348353 @default.
- W2955562824 cites W2107915862 @default.
- W2955562824 cites W2112164016 @default.
- W2955562824 cites W2119382550 @default.
- W2955562824 cites W2123682012 @default.
- W2955562824 cites W2124548165 @default.
- W2955562824 cites W2135383305 @default.
- W2955562824 cites W2140255167 @default.
- W2955562824 cites W2143969246 @default.
- W2955562824 cites W2144713064 @default.
- W2955562824 cites W2147449010 @default.
- W2955562824 cites W2151228900 @default.
- W2955562824 cites W2156773695 @default.
- W2955562824 cites W2163683765 @default.
- W2955562824 cites W2165643853 @default.
- W2955562824 cites W2171928181 @default.
- W2955562824 cites W3146520007 @default.
- W2955562824 cites W4234406933 @default.
- W2955562824 cites W4247845568 @default.
- W2955562824 cites W4252684946 @default.
- W2955562824 doi "https://doi.org/10.1007/978-3-030-16339-6_6" @default.
- W2955562824 hasPublicationYear "2019" @default.
- W2955562824 type Work @default.
- W2955562824 sameAs 2955562824 @default.
- W2955562824 citedByCount "6" @default.
- W2955562824 countsByYear W29555628242019 @default.
- W2955562824 countsByYear W29555628242020 @default.
- W2955562824 countsByYear W29555628242021 @default.
- W2955562824 crossrefType "book-chapter" @default.
- W2955562824 hasAuthorship W2955562824A5000506517 @default.
- W2955562824 hasAuthorship W2955562824A5007814653 @default.
- W2955562824 hasAuthorship W2955562824A5079450474 @default.
- W2955562824 hasConcept C100339178 @default.
- W2955562824 hasConcept C11413529 @default.
- W2955562824 hasConcept C126255220 @default.
- W2955562824 hasConcept C13280743 @default.
- W2955562824 hasConcept C134215735 @default.
- W2955562824 hasConcept C144024400 @default.
- W2955562824 hasConcept C154945302 @default.
- W2955562824 hasConcept C159985019 @default.
- W2955562824 hasConcept C164017216 @default.
- W2955562824 hasConcept C181335050 @default.
- W2955562824 hasConcept C185798385 @default.
- W2955562824 hasConcept C18903297 @default.
- W2955562824 hasConcept C19165224 @default.
- W2955562824 hasConcept C192562407 @default.
- W2955562824 hasConcept C205649164 @default.
- W2955562824 hasConcept C2776319702 @default.
- W2955562824 hasConcept C2780499737 @default.
- W2955562824 hasConcept C2781220375 @default.
- W2955562824 hasConcept C2987595161 @default.
- W2955562824 hasConcept C33923547 @default.
- W2955562824 hasConcept C41008148 @default.
- W2955562824 hasConcept C86803240 @default.
- W2955562824 hasConceptScore W2955562824C100339178 @default.
- W2955562824 hasConceptScore W2955562824C11413529 @default.
- W2955562824 hasConceptScore W2955562824C126255220 @default.
- W2955562824 hasConceptScore W2955562824C13280743 @default.
- W2955562824 hasConceptScore W2955562824C134215735 @default.