Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955646516> ?p ?o ?g. }
- W2955646516 endingPage "155017" @default.
- W2955646516 startingPage "155017" @default.
- W2955646516 abstract "Mumford-Shah (MS) functional has emerged as a regularization technique in x-ray computed tomography (CT) recently. However, for high-resolution CT applications, the huge size of both projection data and image leads to an implementation difficulty. In this work, we propose an approach to implement and accelerate MS regularization on a multi-GPU platform to resolve the issue of data size and rich onboard memory and computing units. We have established a novel partition scheme of the 3D volume under reconstruction and corresponding multithread parallel acceleration strategy to fully utilize the computing resource of multi-GPUs. Our implementation is highly modularized and can be easily scaled with the configuration of GPUs. Experiment results with simulation data as well as real data demonstrate a superior reconstruction quality in contrast to the total variation regularization approach, especially for the ultra-low-dose case. Moreover, this is the first time that MS regularization is used for 3D reconstruction of huge images up to 30723 voxels within 12 min." @default.
- W2955646516 created "2019-07-12" @default.
- W2955646516 creator A5003467063 @default.
- W2955646516 creator A5046225712 @default.
- W2955646516 creator A5055689668 @default.
- W2955646516 creator A5058507693 @default.
- W2955646516 creator A5075126167 @default.
- W2955646516 date "2019-08-07" @default.
- W2955646516 modified "2023-10-18" @default.
- W2955646516 title "Image reconstruction by Mumford–Shah regularization for low-dose CT with multi-GPU acceleration" @default.
- W2955646516 cites W1503461665 @default.
- W2955646516 cites W1888116733 @default.
- W2955646516 cites W1972150100 @default.
- W2955646516 cites W1974125392 @default.
- W2955646516 cites W1978333359 @default.
- W2955646516 cites W1995404261 @default.
- W2955646516 cites W2006262045 @default.
- W2955646516 cites W2006366199 @default.
- W2955646516 cites W2011315295 @default.
- W2955646516 cites W2016422812 @default.
- W2955646516 cites W2024662962 @default.
- W2955646516 cites W2035884262 @default.
- W2955646516 cites W2041200067 @default.
- W2955646516 cites W2065390928 @default.
- W2955646516 cites W2065911242 @default.
- W2955646516 cites W2066630786 @default.
- W2955646516 cites W2071099763 @default.
- W2955646516 cites W2090256922 @default.
- W2955646516 cites W2092062478 @default.
- W2955646516 cites W2092672105 @default.
- W2955646516 cites W2096201928 @default.
- W2955646516 cites W2099847319 @default.
- W2955646516 cites W2103559027 @default.
- W2955646516 cites W2103913786 @default.
- W2955646516 cites W2107604145 @default.
- W2955646516 cites W2112009428 @default.
- W2955646516 cites W2114487471 @default.
- W2955646516 cites W2114770744 @default.
- W2955646516 cites W2119259145 @default.
- W2955646516 cites W2122890444 @default.
- W2955646516 cites W2133665775 @default.
- W2955646516 cites W2141042290 @default.
- W2955646516 cites W2155280009 @default.
- W2955646516 cites W2165565866 @default.
- W2955646516 cites W2170260757 @default.
- W2955646516 cites W2316557776 @default.
- W2955646516 cites W2328610283 @default.
- W2955646516 cites W2529773013 @default.
- W2955646516 cites W2557620639 @default.
- W2955646516 cites W2573736202 @default.
- W2955646516 cites W2592219306 @default.
- W2955646516 cites W2610717285 @default.
- W2955646516 cites W2755989196 @default.
- W2955646516 cites W2760169020 @default.
- W2955646516 cites W2766327008 @default.
- W2955646516 doi "https://doi.org/10.1088/1361-6560/ab2c85" @default.
- W2955646516 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31239414" @default.
- W2955646516 hasPublicationYear "2019" @default.
- W2955646516 type Work @default.
- W2955646516 sameAs 2955646516 @default.
- W2955646516 citedByCount "5" @default.
- W2955646516 countsByYear W29556465162020 @default.
- W2955646516 countsByYear W29556465162021 @default.
- W2955646516 countsByYear W29556465162022 @default.
- W2955646516 crossrefType "journal-article" @default.
- W2955646516 hasAuthorship W2955646516A5003467063 @default.
- W2955646516 hasAuthorship W2955646516A5046225712 @default.
- W2955646516 hasAuthorship W2955646516A5055689668 @default.
- W2955646516 hasAuthorship W2955646516A5058507693 @default.
- W2955646516 hasAuthorship W2955646516A5075126167 @default.
- W2955646516 hasConcept C11413529 @default.
- W2955646516 hasConcept C115961682 @default.
- W2955646516 hasConcept C117896860 @default.
- W2955646516 hasConcept C121332964 @default.
- W2955646516 hasConcept C141379421 @default.
- W2955646516 hasConcept C154945302 @default.
- W2955646516 hasConcept C173608175 @default.
- W2955646516 hasConcept C207282899 @default.
- W2955646516 hasConcept C2776135515 @default.
- W2955646516 hasConcept C31972630 @default.
- W2955646516 hasConcept C41008148 @default.
- W2955646516 hasConcept C459310 @default.
- W2955646516 hasConcept C54170458 @default.
- W2955646516 hasConcept C74650414 @default.
- W2955646516 hasConceptScore W2955646516C11413529 @default.
- W2955646516 hasConceptScore W2955646516C115961682 @default.
- W2955646516 hasConceptScore W2955646516C117896860 @default.
- W2955646516 hasConceptScore W2955646516C121332964 @default.
- W2955646516 hasConceptScore W2955646516C141379421 @default.
- W2955646516 hasConceptScore W2955646516C154945302 @default.
- W2955646516 hasConceptScore W2955646516C173608175 @default.
- W2955646516 hasConceptScore W2955646516C207282899 @default.
- W2955646516 hasConceptScore W2955646516C2776135515 @default.
- W2955646516 hasConceptScore W2955646516C31972630 @default.
- W2955646516 hasConceptScore W2955646516C41008148 @default.
- W2955646516 hasConceptScore W2955646516C459310 @default.
- W2955646516 hasConceptScore W2955646516C54170458 @default.
- W2955646516 hasConceptScore W2955646516C74650414 @default.