Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955648521> ?p ?o ?g. }
- W2955648521 endingPage "249" @default.
- W2955648521 startingPage "241" @default.
- W2955648521 abstract "Abstract Motivation Cancer progresses by accumulating genomic events, such as mutations and copy number alterations, whose chronological order is key to understanding the disease but difficult to observe. Instead, cancer progression models use co-occurrence patterns in cross-sectional data to infer epistatic interactions between events and thereby uncover their most likely order of occurrence. State-of-the-art progression models, however, are limited by mathematical tractability and only allow events to interact in directed acyclic graphs, to promote but not inhibit subsequent events, or to be mutually exclusive in distinct groups that cannot overlap. Results Here we propose Mutual Hazard Networks (MHN), a new Machine Learning algorithm to infer cyclic progression models from cross-sectional data. MHN model events by their spontaneous rate of fixation and by multiplicative effects they exert on the rates of successive events. MHN compared favourably to acyclic models in cross-validated model fit on four datasets tested. In application to the glioblastoma dataset from The Cancer Genome Atlas, MHN proposed a novel interaction in line with consecutive biopsies: IDH1 mutations are early events that promote subsequent fixation of TP53 mutations. Availability and implementation Implementation and data are available at https://github.com/RudiSchill/MHN. Supplementary information Supplementary data are available at Bioinformatics online." @default.
- W2955648521 created "2019-07-12" @default.
- W2955648521 creator A5003217898 @default.
- W2955648521 creator A5017848833 @default.
- W2955648521 creator A5079231325 @default.
- W2955648521 creator A5081552716 @default.
- W2955648521 date "2019-06-28" @default.
- W2955648521 modified "2023-10-15" @default.
- W2955648521 title "Modelling cancer progression using Mutual Hazard Networks" @default.
- W2955648521 cites W1582541231 @default.
- W2955648521 cites W1598410563 @default.
- W2955648521 cites W1911343030 @default.
- W2955648521 cites W1937970165 @default.
- W2955648521 cites W1967304777 @default.
- W2955648521 cites W1967986582 @default.
- W2955648521 cites W1984853417 @default.
- W2955648521 cites W2001258296 @default.
- W2955648521 cites W2017283085 @default.
- W2955648521 cites W2025183726 @default.
- W2955648521 cites W2030430397 @default.
- W2955648521 cites W2039577063 @default.
- W2955648521 cites W2042536531 @default.
- W2955648521 cites W2042851051 @default.
- W2955648521 cites W2061285646 @default.
- W2955648521 cites W2061297568 @default.
- W2955648521 cites W2073294762 @default.
- W2955648521 cites W2079727537 @default.
- W2955648521 cites W2112495947 @default.
- W2955648521 cites W2126172213 @default.
- W2955648521 cites W2135488124 @default.
- W2955648521 cites W2141545130 @default.
- W2955648521 cites W2142635246 @default.
- W2955648521 cites W2144940507 @default.
- W2955648521 cites W2149441684 @default.
- W2955648521 cites W2150073600 @default.
- W2955648521 cites W2153938747 @default.
- W2955648521 cites W2154444902 @default.
- W2955648521 cites W2157925880 @default.
- W2955648521 cites W2161289668 @default.
- W2955648521 cites W2167278498 @default.
- W2955648521 cites W2253465175 @default.
- W2955648521 cites W2513118531 @default.
- W2955648521 cites W2562809264 @default.
- W2955648521 cites W2588969809 @default.
- W2955648521 cites W2601000897 @default.
- W2955648521 cites W2610167300 @default.
- W2955648521 cites W2626355241 @default.
- W2955648521 cites W2739867739 @default.
- W2955648521 cites W2762185802 @default.
- W2955648521 doi "https://doi.org/10.1093/bioinformatics/btz513" @default.
- W2955648521 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6956791" @default.
- W2955648521 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31250881" @default.
- W2955648521 hasPublicationYear "2019" @default.
- W2955648521 type Work @default.
- W2955648521 sameAs 2955648521 @default.
- W2955648521 citedByCount "16" @default.
- W2955648521 countsByYear W29556485212020 @default.
- W2955648521 countsByYear W29556485212021 @default.
- W2955648521 countsByYear W29556485212022 @default.
- W2955648521 countsByYear W29556485212023 @default.
- W2955648521 crossrefType "journal-article" @default.
- W2955648521 hasAuthorship W2955648521A5003217898 @default.
- W2955648521 hasAuthorship W2955648521A5017848833 @default.
- W2955648521 hasAuthorship W2955648521A5079231325 @default.
- W2955648521 hasAuthorship W2955648521A5081552716 @default.
- W2955648521 hasBestOaLocation W29556485211 @default.
- W2955648521 hasConcept C104317684 @default.
- W2955648521 hasConcept C119857082 @default.
- W2955648521 hasConcept C134306372 @default.
- W2955648521 hasConcept C146249460 @default.
- W2955648521 hasConcept C154945302 @default.
- W2955648521 hasConcept C33923547 @default.
- W2955648521 hasConcept C41008148 @default.
- W2955648521 hasConcept C42747912 @default.
- W2955648521 hasConcept C54355233 @default.
- W2955648521 hasConcept C60644358 @default.
- W2955648521 hasConcept C61727976 @default.
- W2955648521 hasConcept C70721500 @default.
- W2955648521 hasConcept C86803240 @default.
- W2955648521 hasConceptScore W2955648521C104317684 @default.
- W2955648521 hasConceptScore W2955648521C119857082 @default.
- W2955648521 hasConceptScore W2955648521C134306372 @default.
- W2955648521 hasConceptScore W2955648521C146249460 @default.
- W2955648521 hasConceptScore W2955648521C154945302 @default.
- W2955648521 hasConceptScore W2955648521C33923547 @default.
- W2955648521 hasConceptScore W2955648521C41008148 @default.
- W2955648521 hasConceptScore W2955648521C42747912 @default.
- W2955648521 hasConceptScore W2955648521C54355233 @default.
- W2955648521 hasConceptScore W2955648521C60644358 @default.
- W2955648521 hasConceptScore W2955648521C61727976 @default.
- W2955648521 hasConceptScore W2955648521C70721500 @default.
- W2955648521 hasConceptScore W2955648521C86803240 @default.
- W2955648521 hasFunder F4320320879 @default.
- W2955648521 hasIssue "1" @default.
- W2955648521 hasLocation W29556485211 @default.
- W2955648521 hasLocation W29556485212 @default.
- W2955648521 hasLocation W29556485213 @default.
- W2955648521 hasLocation W29556485214 @default.