Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955666723> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2955666723 endingPage "111286" @default.
- W2955666723 startingPage "111286" @default.
- W2955666723 abstract "Landsat Thematic Mapper has been collecting multispectral imagery at 30 m resolution globally since 1984. One utility of the data has been for detailed mapping of agricultural regions and seasonal identification of crops grown within them. However, the ability to do so has only been applied sporadically and eluded widespread adoption due to cost of the imagery, burdensome preprocessing requirements, and computing not being up to the task. These hurdles have become much reduced of recent with the free and open distribution of the Landsat imagery, emphasis on ready-to-use surface reflectance data products, and distributed high performance computing infrastructures available online in “the cloud.” As such, this work leverages these aspects and investigates the ability to retrospectively map summer crops over the United States (US) annually from 1984 to 2007. Google's Earth Engine Internet-based analytical platform containing the historical Landsat archive in surface reflectance format was used as a foundation for the classification work. Robust 30 m Cropland Data Layer (CDL) information from US Department of Agriculture (USDA) for years 2008 through 2011 were leveraged to train rule-based classifiers which were applied back through time to each year 1984 through 2007. Focus crops were corn, soybeans, and winter wheat – the three largest by area in the US. A large sampling of highly intensive counties throughout the country were prototyped for generation of the 24 years of historical crop cover. For validation, crop area statistics were calculated for each county-year and compared to survey-based information existing from the USDA. Results were muted overall with the average crop area coefficient of determination (R2) correlations for the years 1984–2007 found to be 0.192, 0.159, and 0.142 for corn, soybeans, and winter wheat, respectively. Furthermore, the standard deviations were variable at 0.132, 0.177, and 0.133, also respectively. While unimpressive, it was found as a benchmark that the R2 between the 2008 through 2017 CDL classifications were only 0.478, 0.686, and 0.726 and thus a suggestion that the USDA area statistics are an imperfect measure of map accuracy. Deletion of approximately one third to one half of the grossest 1984–2007 outlier years from the historical outputs pulled the correlations to the benchmark standard. Qualitatively, most of the remaining years classified looked of high quality and were believed useful as field-level thematic crop area maps. These historical cropland maps could provide the ability to better detail the role farming has played on the broad US landscape over recent decades." @default.
- W2955666723 created "2019-07-12" @default.
- W2955666723 creator A5077318052 @default.
- W2955666723 date "2019-10-01" @default.
- W2955666723 modified "2023-10-16" @default.
- W2955666723 title "Using the Landsat archive to map crop cover history across the United States" @default.
- W2955666723 cites W1966446776 @default.
- W2955666723 cites W1975947941 @default.
- W2955666723 cites W1981213426 @default.
- W2955666723 cites W1985864794 @default.
- W2955666723 cites W1997730840 @default.
- W2955666723 cites W2008085934 @default.
- W2955666723 cites W2039431454 @default.
- W2955666723 cites W2047549267 @default.
- W2955666723 cites W2055718260 @default.
- W2955666723 cites W2072465375 @default.
- W2955666723 cites W2106256460 @default.
- W2955666723 cites W2121601221 @default.
- W2955666723 cites W2151456308 @default.
- W2955666723 cites W2157675604 @default.
- W2955666723 cites W2179721300 @default.
- W2955666723 cites W2188083314 @default.
- W2955666723 cites W2199031689 @default.
- W2955666723 cites W2300415889 @default.
- W2955666723 cites W2414117070 @default.
- W2955666723 cites W2516173962 @default.
- W2955666723 cites W2560167313 @default.
- W2955666723 cites W2578830027 @default.
- W2955666723 cites W2591129009 @default.
- W2955666723 cites W2607245364 @default.
- W2955666723 cites W2725897987 @default.
- W2955666723 cites W2736036091 @default.
- W2955666723 doi "https://doi.org/10.1016/j.rse.2019.111286" @default.
- W2955666723 hasPublicationYear "2019" @default.
- W2955666723 type Work @default.
- W2955666723 sameAs 2955666723 @default.
- W2955666723 citedByCount "49" @default.
- W2955666723 countsByYear W29556667232020 @default.
- W2955666723 countsByYear W29556667232021 @default.
- W2955666723 countsByYear W29556667232022 @default.
- W2955666723 countsByYear W29556667232023 @default.
- W2955666723 crossrefType "journal-article" @default.
- W2955666723 hasAuthorship W2955666723A5077318052 @default.
- W2955666723 hasBestOaLocation W29556667231 @default.
- W2955666723 hasConcept C111919701 @default.
- W2955666723 hasConcept C127413603 @default.
- W2955666723 hasConcept C147176958 @default.
- W2955666723 hasConcept C173163844 @default.
- W2955666723 hasConcept C205649164 @default.
- W2955666723 hasConcept C2775938548 @default.
- W2955666723 hasConcept C2778102629 @default.
- W2955666723 hasConcept C2780648208 @default.
- W2955666723 hasConcept C39432304 @default.
- W2955666723 hasConcept C41008148 @default.
- W2955666723 hasConcept C4792198 @default.
- W2955666723 hasConcept C58640448 @default.
- W2955666723 hasConcept C62649853 @default.
- W2955666723 hasConcept C79974875 @default.
- W2955666723 hasConcept C93692415 @default.
- W2955666723 hasConceptScore W2955666723C111919701 @default.
- W2955666723 hasConceptScore W2955666723C127413603 @default.
- W2955666723 hasConceptScore W2955666723C147176958 @default.
- W2955666723 hasConceptScore W2955666723C173163844 @default.
- W2955666723 hasConceptScore W2955666723C205649164 @default.
- W2955666723 hasConceptScore W2955666723C2775938548 @default.
- W2955666723 hasConceptScore W2955666723C2778102629 @default.
- W2955666723 hasConceptScore W2955666723C2780648208 @default.
- W2955666723 hasConceptScore W2955666723C39432304 @default.
- W2955666723 hasConceptScore W2955666723C41008148 @default.
- W2955666723 hasConceptScore W2955666723C4792198 @default.
- W2955666723 hasConceptScore W2955666723C58640448 @default.
- W2955666723 hasConceptScore W2955666723C62649853 @default.
- W2955666723 hasConceptScore W2955666723C79974875 @default.
- W2955666723 hasConceptScore W2955666723C93692415 @default.
- W2955666723 hasFunder F4320306114 @default.
- W2955666723 hasFunder F4320332785 @default.
- W2955666723 hasLocation W29556667231 @default.
- W2955666723 hasOpenAccess W2955666723 @default.
- W2955666723 hasPrimaryLocation W29556667231 @default.
- W2955666723 hasRelatedWork W177286780 @default.
- W2955666723 hasRelatedWork W2048049946 @default.
- W2955666723 hasRelatedWork W2086758789 @default.
- W2955666723 hasRelatedWork W2134232109 @default.
- W2955666723 hasRelatedWork W2168185823 @default.
- W2955666723 hasRelatedWork W2278948991 @default.
- W2955666723 hasRelatedWork W2317744235 @default.
- W2955666723 hasRelatedWork W2559791172 @default.
- W2955666723 hasRelatedWork W28995522 @default.
- W2955666723 hasRelatedWork W603675201 @default.
- W2955666723 hasVolume "232" @default.
- W2955666723 isParatext "false" @default.
- W2955666723 isRetracted "false" @default.
- W2955666723 magId "2955666723" @default.
- W2955666723 workType "article" @default.