Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955669299> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2955669299 abstract "Chaos theory constitutes a promising and powerful tool to address forecasting problems of nonlinear time series, since it catches the dynamical and geometrical structure of very complex systems, ensuring a superior accuracy on the predicted results in comparison to classical approaches, and lowering the complexity typical of the deep learning ones. This paper applies the nonlinear chaos theory principles to the passenger demand forecasting problem. The proposed scheme processes and analyzes the big data of passengers requests collected during one month in the city of Chengdu, China. In order to predict passenger demand behavior, the chaotic trend of the time series has been identified through the largest Lyapunov exponent research. Then, the phase space reconstruction has been pursued, through the detection of the suitable embedding dimension and time delay, to improve forecasting accuracy and avoid information redundancy. A combined local and global predictive method has been proposed, and the validity of the approach is confirmed by comparison with two state-of-art forecasting methods, the auto-regressive and the auto-regressive moving-average with exogenous input. System performance is evaluated in terms of mean squared error and mean percent forecasting error." @default.
- W2955669299 created "2019-07-12" @default.
- W2955669299 creator A5004031874 @default.
- W2955669299 creator A5057143279 @default.
- W2955669299 creator A5063667378 @default.
- W2955669299 creator A5084081016 @default.
- W2955669299 date "2019-05-01" @default.
- W2955669299 modified "2023-09-25" @default.
- W2955669299 title "Passengers Demand Forecasting Based on Chaos Theory" @default.
- W2955669299 cites W122965473 @default.
- W2955669299 cites W1549386224 @default.
- W2955669299 cites W2020572193 @default.
- W2955669299 cites W2031365860 @default.
- W2955669299 cites W2031627503 @default.
- W2955669299 cites W2040704490 @default.
- W2955669299 cites W2068540186 @default.
- W2955669299 cites W2089217930 @default.
- W2955669299 cites W2124428761 @default.
- W2955669299 cites W2125717105 @default.
- W2955669299 cites W2138698721 @default.
- W2955669299 cites W2290960045 @default.
- W2955669299 cites W2503828559 @default.
- W2955669299 cites W2535645089 @default.
- W2955669299 cites W2809792077 @default.
- W2955669299 cites W4299429830 @default.
- W2955669299 doi "https://doi.org/10.1109/icc.2019.8762041" @default.
- W2955669299 hasPublicationYear "2019" @default.
- W2955669299 type Work @default.
- W2955669299 sameAs 2955669299 @default.
- W2955669299 citedByCount "1" @default.
- W2955669299 countsByYear W29556692992022 @default.
- W2955669299 crossrefType "proceedings-article" @default.
- W2955669299 hasAuthorship W2955669299A5004031874 @default.
- W2955669299 hasAuthorship W2955669299A5057143279 @default.
- W2955669299 hasAuthorship W2955669299A5063667378 @default.
- W2955669299 hasAuthorship W2955669299A5084081016 @default.
- W2955669299 hasConcept C111919701 @default.
- W2955669299 hasConcept C119857082 @default.
- W2955669299 hasConcept C121332964 @default.
- W2955669299 hasConcept C126255220 @default.
- W2955669299 hasConcept C151342819 @default.
- W2955669299 hasConcept C151406439 @default.
- W2955669299 hasConcept C152124472 @default.
- W2955669299 hasConcept C154945302 @default.
- W2955669299 hasConcept C158622935 @default.
- W2955669299 hasConcept C191544260 @default.
- W2955669299 hasConcept C193809577 @default.
- W2955669299 hasConcept C2777052490 @default.
- W2955669299 hasConcept C33923547 @default.
- W2955669299 hasConcept C41008148 @default.
- W2955669299 hasConcept C41608201 @default.
- W2955669299 hasConcept C42475967 @default.
- W2955669299 hasConcept C62520636 @default.
- W2955669299 hasConcept C92866567 @default.
- W2955669299 hasConcept C97355855 @default.
- W2955669299 hasConceptScore W2955669299C111919701 @default.
- W2955669299 hasConceptScore W2955669299C119857082 @default.
- W2955669299 hasConceptScore W2955669299C121332964 @default.
- W2955669299 hasConceptScore W2955669299C126255220 @default.
- W2955669299 hasConceptScore W2955669299C151342819 @default.
- W2955669299 hasConceptScore W2955669299C151406439 @default.
- W2955669299 hasConceptScore W2955669299C152124472 @default.
- W2955669299 hasConceptScore W2955669299C154945302 @default.
- W2955669299 hasConceptScore W2955669299C158622935 @default.
- W2955669299 hasConceptScore W2955669299C191544260 @default.
- W2955669299 hasConceptScore W2955669299C193809577 @default.
- W2955669299 hasConceptScore W2955669299C2777052490 @default.
- W2955669299 hasConceptScore W2955669299C33923547 @default.
- W2955669299 hasConceptScore W2955669299C41008148 @default.
- W2955669299 hasConceptScore W2955669299C41608201 @default.
- W2955669299 hasConceptScore W2955669299C42475967 @default.
- W2955669299 hasConceptScore W2955669299C62520636 @default.
- W2955669299 hasConceptScore W2955669299C92866567 @default.
- W2955669299 hasConceptScore W2955669299C97355855 @default.
- W2955669299 hasLocation W29556692991 @default.
- W2955669299 hasOpenAccess W2955669299 @default.
- W2955669299 hasPrimaryLocation W29556692991 @default.
- W2955669299 hasRelatedWork W1530147258 @default.
- W2955669299 hasRelatedWork W2011439189 @default.
- W2955669299 hasRelatedWork W2043533524 @default.
- W2955669299 hasRelatedWork W2368839539 @default.
- W2955669299 hasRelatedWork W2383889592 @default.
- W2955669299 hasRelatedWork W2386876059 @default.
- W2955669299 hasRelatedWork W2588101174 @default.
- W2955669299 hasRelatedWork W2950455711 @default.
- W2955669299 hasRelatedWork W2955669299 @default.
- W2955669299 hasRelatedWork W810397603 @default.
- W2955669299 isParatext "false" @default.
- W2955669299 isRetracted "false" @default.
- W2955669299 magId "2955669299" @default.
- W2955669299 workType "article" @default.