Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955731188> ?p ?o ?g. }
- W2955731188 endingPage "84" @default.
- W2955731188 startingPage "72" @default.
- W2955731188 abstract "Single image dehazing is a critical image pre-processing step for subsequent high-level computer vision tasks. However, it remains challenging due to its ill-posed nature. Existing dehazing models tend to suffer from model overcomplexity and computational inefficiency or have limited representation capacity. To tackle these challenges, here we propose a fast and accurate multi-scale end-to-end dehazing network called FAMED-Net, which comprises encoders at three scales and a fusion module to efficiently and directly learn the haze-free image. Each encoder consists of cascaded and densely connected point-wise convolutional layers and pooling layers. Since no larger convolutional kernels are used and features are reused layer-by-layer, FAMED-Net is lightweight and computationally efficient. Thorough empirical studies on public synthetic datasets (including RESIDE) and real-world hazy images demonstrate the superiority of FAMED-Net over other representative state-of-the-art models with respect to model complexity, computational efficiency, restoration accuracy, and cross-set generalization. The code will be made publicly available." @default.
- W2955731188 created "2019-07-12" @default.
- W2955731188 creator A5001819736 @default.
- W2955731188 creator A5028981937 @default.
- W2955731188 date "2020-01-01" @default.
- W2955731188 modified "2023-10-17" @default.
- W2955731188 title "FAMED-Net: A Fast and Accurate Multi-Scale End-to-End Dehazing Network" @default.
- W2955731188 cites W104847522 @default.
- W2955731188 cites W1996021349 @default.
- W2955731188 cites W2003709967 @default.
- W2955731188 cites W2028990532 @default.
- W2955731188 cites W2056860348 @default.
- W2955731188 cites W2065002911 @default.
- W2955731188 cites W2095543923 @default.
- W2955731188 cites W2110644821 @default.
- W2955731188 cites W2121880036 @default.
- W2955731188 cites W2125188192 @default.
- W2955731188 cites W2128254161 @default.
- W2955731188 cites W2147318913 @default.
- W2955731188 cites W2151103935 @default.
- W2955731188 cites W2155893237 @default.
- W2955731188 cites W2156936307 @default.
- W2955731188 cites W2256362396 @default.
- W2955731188 cites W2412782625 @default.
- W2955731188 cites W2467473805 @default.
- W2955731188 cites W2519481857 @default.
- W2955731188 cites W2536722097 @default.
- W2955731188 cites W2565639579 @default.
- W2955731188 cites W2607041014 @default.
- W2955731188 cites W2746139371 @default.
- W2955731188 cites W2748021867 @default.
- W2955731188 cites W2751349477 @default.
- W2955731188 cites W2767420414 @default.
- W2955731188 cites W2779176852 @default.
- W2955731188 cites W2798876216 @default.
- W2955731188 cites W2809980286 @default.
- W2955731188 cites W2890894871 @default.
- W2955731188 cites W2895176907 @default.
- W2955731188 cites W2951751271 @default.
- W2955731188 cites W2962754725 @default.
- W2955731188 cites W2962816068 @default.
- W2955731188 cites W2963306157 @default.
- W2955731188 cites W2963446712 @default.
- W2955731188 cites W2963928582 @default.
- W2955731188 cites W845365781 @default.
- W2955731188 doi "https://doi.org/10.1109/tip.2019.2922837" @default.
- W2955731188 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31283505" @default.
- W2955731188 hasPublicationYear "2020" @default.
- W2955731188 type Work @default.
- W2955731188 sameAs 2955731188 @default.
- W2955731188 citedByCount "116" @default.
- W2955731188 countsByYear W29557311882019 @default.
- W2955731188 countsByYear W29557311882020 @default.
- W2955731188 countsByYear W29557311882021 @default.
- W2955731188 countsByYear W29557311882022 @default.
- W2955731188 countsByYear W29557311882023 @default.
- W2955731188 crossrefType "journal-article" @default.
- W2955731188 hasAuthorship W2955731188A5001819736 @default.
- W2955731188 hasAuthorship W2955731188A5028981937 @default.
- W2955731188 hasBestOaLocation W29557311882 @default.
- W2955731188 hasConcept C111919701 @default.
- W2955731188 hasConcept C11413529 @default.
- W2955731188 hasConcept C114614502 @default.
- W2955731188 hasConcept C115961682 @default.
- W2955731188 hasConcept C118505674 @default.
- W2955731188 hasConcept C134306372 @default.
- W2955731188 hasConcept C14166107 @default.
- W2955731188 hasConcept C154945302 @default.
- W2955731188 hasConcept C177148314 @default.
- W2955731188 hasConcept C177264268 @default.
- W2955731188 hasConcept C178790620 @default.
- W2955731188 hasConcept C179799912 @default.
- W2955731188 hasConcept C185592680 @default.
- W2955731188 hasConcept C199360897 @default.
- W2955731188 hasConcept C2524010 @default.
- W2955731188 hasConcept C2776760102 @default.
- W2955731188 hasConcept C2779227376 @default.
- W2955731188 hasConcept C31972630 @default.
- W2955731188 hasConcept C33923547 @default.
- W2955731188 hasConcept C41008148 @default.
- W2955731188 hasConcept C70437156 @default.
- W2955731188 hasConcept C74193536 @default.
- W2955731188 hasConcept C74296488 @default.
- W2955731188 hasConcept C81363708 @default.
- W2955731188 hasConceptScore W2955731188C111919701 @default.
- W2955731188 hasConceptScore W2955731188C11413529 @default.
- W2955731188 hasConceptScore W2955731188C114614502 @default.
- W2955731188 hasConceptScore W2955731188C115961682 @default.
- W2955731188 hasConceptScore W2955731188C118505674 @default.
- W2955731188 hasConceptScore W2955731188C134306372 @default.
- W2955731188 hasConceptScore W2955731188C14166107 @default.
- W2955731188 hasConceptScore W2955731188C154945302 @default.
- W2955731188 hasConceptScore W2955731188C177148314 @default.
- W2955731188 hasConceptScore W2955731188C177264268 @default.
- W2955731188 hasConceptScore W2955731188C178790620 @default.
- W2955731188 hasConceptScore W2955731188C179799912 @default.
- W2955731188 hasConceptScore W2955731188C185592680 @default.
- W2955731188 hasConceptScore W2955731188C199360897 @default.