Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955734908> ?p ?o ?g. }
- W2955734908 endingPage "174" @default.
- W2955734908 startingPage "161" @default.
- W2955734908 abstract "Tissue scaffolds need to be engineered to be cell compatible, have timely biodegradable character, be functional with respect to providing niche cell support for tissue repair and regeneration, readily accommodate multiple cell types, and have mechanical properties that enable the simulation of the native tissue. In this study, electrospun degradable polar hydrophobic ionic polyurethane (D-PHI) scaffolds were generated in order to yield an extracellular matrix-like structure for tissue engineering applications. D-PHI oligomers were synthesized, blended with a degradable linear polycarbonate polyurethane (PCNU), and electrospun with simultaneous in situ UV cross-linking in order to generate aligned nanofibrous scaffolds in the form of elastomeric composite materials. The D-PHI/PCNU scaffold fibre morphology, cross-linking efficiency, surface nature, mechanical properties, in vivo degradation and integration, as well as in vitro cell compatibility were characterized. The results showed that D-PHI/PCNU scaffolds had a high cross-linking efficiency, stronger polar nature, and lower stiffness relative to PCNU scaffolds. In vivo, the D-PHI/PCNU scaffold degraded relatively slowly, thereby enabling new tissue time to form and yielding very good integration with the latter tissue. Based on a study with A10 vascular smooth muscle cells, the D-PHI/PCNU scaffold was able to support high cell viability, adhesion, and expression of typical smooth muscle cell markers after a 7-day culture period, which was comparable to PCNU scaffolds. These characterization results demonstrate that the unique properties of a D-PHI/PCNU scaffold, combined with the benefits of electrospinning, could allow for the generation of a tissue engineered scaffold that mimics important aspects of the native extracellular matrix and could be used for functional tissue regeneration. Tissue engineered scaffolds should recapitulate native extracellular matrix features. This study investigates the processing of a classical polycarbonate polyurethane (PCNU) with a cross-linked and degradable ionomeric polyurethane (D-PHI), polymerized via in situ rapid light curing to yield a 3-dimensional co-electrospun nanofibre matrix with chemical diversity and low modulus character. This research advances the use of D-PHI for tissue engineering applications by providing a facile means of changing physical and chemical properties in classical PCNUs without the need to adjust spinning viscosities of the base polymer. Further, the in vivo and cell culture findings set the stage for introducing unique elastic materials which inherently support wound healing, repair, and regeneration in tissues, for applications that require the recapitulation of native extracellular matrix physical features." @default.
- W2955734908 created "2019-07-12" @default.
- W2955734908 creator A5026779711 @default.
- W2955734908 creator A5048135300 @default.
- W2955734908 creator A5059641969 @default.
- W2955734908 date "2019-09-01" @default.
- W2955734908 modified "2023-10-15" @default.
- W2955734908 title "Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites" @default.
- W2955734908 cites W1497266024 @default.
- W2955734908 cites W1621216085 @default.
- W2955734908 cites W1963711373 @default.
- W2955734908 cites W1965509096 @default.
- W2955734908 cites W1968921130 @default.
- W2955734908 cites W1970217772 @default.
- W2955734908 cites W1974193257 @default.
- W2955734908 cites W1975140804 @default.
- W2955734908 cites W1978699906 @default.
- W2955734908 cites W1979892184 @default.
- W2955734908 cites W1981910082 @default.
- W2955734908 cites W1981976329 @default.
- W2955734908 cites W1988115905 @default.
- W2955734908 cites W1989171545 @default.
- W2955734908 cites W1990150155 @default.
- W2955734908 cites W1997187985 @default.
- W2955734908 cites W2005879115 @default.
- W2955734908 cites W2007345609 @default.
- W2955734908 cites W2008962117 @default.
- W2955734908 cites W2011152593 @default.
- W2955734908 cites W2014068204 @default.
- W2955734908 cites W2016317599 @default.
- W2955734908 cites W2023676348 @default.
- W2955734908 cites W2028810337 @default.
- W2955734908 cites W2032195777 @default.
- W2955734908 cites W2036872665 @default.
- W2955734908 cites W2038373764 @default.
- W2955734908 cites W2039068212 @default.
- W2955734908 cites W2051651404 @default.
- W2955734908 cites W2056104115 @default.
- W2955734908 cites W2060761916 @default.
- W2955734908 cites W2066949904 @default.
- W2955734908 cites W2077871749 @default.
- W2955734908 cites W2083851164 @default.
- W2955734908 cites W2085016403 @default.
- W2955734908 cites W2086277592 @default.
- W2955734908 cites W2090073018 @default.
- W2955734908 cites W2093162963 @default.
- W2955734908 cites W2099707643 @default.
- W2955734908 cites W2101601223 @default.
- W2955734908 cites W2103924242 @default.
- W2955734908 cites W2106035984 @default.
- W2955734908 cites W2118876290 @default.
- W2955734908 cites W2121822802 @default.
- W2955734908 cites W2122857209 @default.
- W2955734908 cites W2130364631 @default.
- W2955734908 cites W2134208433 @default.
- W2955734908 cites W2148468145 @default.
- W2955734908 cites W2148476302 @default.
- W2955734908 cites W2155144124 @default.
- W2955734908 cites W2155223860 @default.
- W2955734908 cites W2168224031 @default.
- W2955734908 cites W2290866290 @default.
- W2955734908 cites W2293569683 @default.
- W2955734908 cites W2548592003 @default.
- W2955734908 cites W2587756205 @default.
- W2955734908 cites W2754373130 @default.
- W2955734908 cites W4238030381 @default.
- W2955734908 cites W50127394 @default.
- W2955734908 cites W572966463 @default.
- W2955734908 cites W593020771 @default.
- W2955734908 doi "https://doi.org/10.1016/j.actbio.2019.06.046" @default.
- W2955734908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31254683" @default.
- W2955734908 hasPublicationYear "2019" @default.
- W2955734908 type Work @default.
- W2955734908 sameAs 2955734908 @default.
- W2955734908 citedByCount "17" @default.
- W2955734908 countsByYear W29557349082020 @default.
- W2955734908 countsByYear W29557349082021 @default.
- W2955734908 countsByYear W29557349082022 @default.
- W2955734908 countsByYear W29557349082023 @default.
- W2955734908 crossrefType "journal-article" @default.
- W2955734908 hasAuthorship W2955734908A5026779711 @default.
- W2955734908 hasAuthorship W2955734908A5048135300 @default.
- W2955734908 hasAuthorship W2955734908A5059641969 @default.
- W2955734908 hasConcept C136229726 @default.
- W2955734908 hasConcept C144796933 @default.
- W2955734908 hasConcept C159985019 @default.
- W2955734908 hasConcept C171056886 @default.
- W2955734908 hasConcept C185592680 @default.
- W2955734908 hasConcept C189165786 @default.
- W2955734908 hasConcept C192562407 @default.
- W2955734908 hasConcept C2779578285 @default.
- W2955734908 hasConcept C38052585 @default.
- W2955734908 hasConcept C49892992 @default.
- W2955734908 hasConcept C521977710 @default.
- W2955734908 hasConcept C55493867 @default.
- W2955734908 hasConcept C71924100 @default.
- W2955734908 hasConcept C86803240 @default.
- W2955734908 hasConcept C89429830 @default.