Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955755015> ?p ?o ?g. }
- W2955755015 endingPage "3499" @default.
- W2955755015 startingPage "3499" @default.
- W2955755015 abstract "This study sought to propose a big data analysis and prediction model for transmission line tower outliers to assess when something is wrong with transmission line tower big data based on deep reinforcement learning. The model enables choosing automatic cluster K values based on non-labeled sensor big data. It also allows measuring the distance of action between data inside a cluster with the Q-value representing network output in the altered transmission line tower big data clustering algorithm containing transmission line tower outliers and old Deep Q Network. Specifically, this study performed principal component analysis to categorize transmission line tower data and proposed an automatic initial central point approach through standard normal distribution. It also proposed the A-Deep Q-Learning algorithm altered from the deep Q-Learning algorithm to explore policies based on the experiences of clustered data learning. It can be used to perform transmission line tower outlier data learning based on the distance of data within a cluster. The performance evaluation results show that the proposed model recorded an approximately 2.29%~4.19% higher prediction rate and around 0.8% ~ 4.3% higher accuracy rate compared to the old transmission line tower big data analysis model." @default.
- W2955755015 created "2019-07-12" @default.
- W2955755015 creator A5053786155 @default.
- W2955755015 creator A5066063772 @default.
- W2955755015 date "2019-06-26" @default.
- W2955755015 modified "2023-10-09" @default.
- W2955755015 title "A Novel on Transmission Line Tower Big Data Analysis Model Using Altered K-means and ADQL" @default.
- W2955755015 cites W1436439024 @default.
- W2955755015 cites W1932472321 @default.
- W2955755015 cites W1977556410 @default.
- W2955755015 cites W1984111244 @default.
- W2955755015 cites W2014979870 @default.
- W2955755015 cites W2024998154 @default.
- W2955755015 cites W2026493302 @default.
- W2955755015 cites W2060544202 @default.
- W2955755015 cites W2090135854 @default.
- W2955755015 cites W2094547360 @default.
- W2955755015 cites W2098003791 @default.
- W2955755015 cites W2103145033 @default.
- W2955755015 cites W2145339207 @default.
- W2955755015 cites W2149608506 @default.
- W2955755015 cites W2155556726 @default.
- W2955755015 cites W2155937888 @default.
- W2955755015 cites W2156981270 @default.
- W2955755015 cites W2161736283 @default.
- W2955755015 cites W2170051373 @default.
- W2955755015 cites W2191365824 @default.
- W2955755015 cites W2277948250 @default.
- W2955755015 cites W2288886430 @default.
- W2955755015 cites W2293066912 @default.
- W2955755015 cites W2299372648 @default.
- W2955755015 cites W2343034601 @default.
- W2955755015 cites W2343217767 @default.
- W2955755015 cites W2422242343 @default.
- W2955755015 cites W2500517591 @default.
- W2955755015 cites W2530271030 @default.
- W2955755015 cites W2553706777 @default.
- W2955755015 cites W2562038847 @default.
- W2955755015 cites W2574041338 @default.
- W2955755015 cites W2587078962 @default.
- W2955755015 cites W2593249465 @default.
- W2955755015 cites W2595827050 @default.
- W2955755015 cites W2598890134 @default.
- W2955755015 cites W2607847905 @default.
- W2955755015 cites W2613310014 @default.
- W2955755015 cites W2615509641 @default.
- W2955755015 cites W2619340668 @default.
- W2955755015 cites W2623568883 @default.
- W2955755015 cites W2731785630 @default.
- W2955755015 cites W2739174228 @default.
- W2955755015 cites W2756846869 @default.
- W2955755015 cites W2766447205 @default.
- W2955755015 cites W2775847963 @default.
- W2955755015 cites W2789316776 @default.
- W2955755015 cites W2789511664 @default.
- W2955755015 cites W2790501791 @default.
- W2955755015 cites W2797538082 @default.
- W2955755015 cites W2798794487 @default.
- W2955755015 cites W2804229512 @default.
- W2955755015 cites W2806161436 @default.
- W2955755015 cites W2867261223 @default.
- W2955755015 cites W2888896501 @default.
- W2955755015 cites W2892973045 @default.
- W2955755015 cites W2901621510 @default.
- W2955755015 cites W2902530939 @default.
- W2955755015 cites W2913259953 @default.
- W2955755015 cites W2922348707 @default.
- W2955755015 cites W2945598538 @default.
- W2955755015 cites W2945647890 @default.
- W2955755015 cites W3100789280 @default.
- W2955755015 cites W32403112 @default.
- W2955755015 cites W4244862496 @default.
- W2955755015 doi "https://doi.org/10.3390/su11133499" @default.
- W2955755015 hasPublicationYear "2019" @default.
- W2955755015 type Work @default.
- W2955755015 sameAs 2955755015 @default.
- W2955755015 citedByCount "13" @default.
- W2955755015 countsByYear W29557550152019 @default.
- W2955755015 countsByYear W29557550152020 @default.
- W2955755015 countsByYear W29557550152021 @default.
- W2955755015 countsByYear W29557550152022 @default.
- W2955755015 countsByYear W29557550152023 @default.
- W2955755015 crossrefType "journal-article" @default.
- W2955755015 hasAuthorship W2955755015A5053786155 @default.
- W2955755015 hasAuthorship W2955755015A5066063772 @default.
- W2955755015 hasBestOaLocation W29557550151 @default.
- W2955755015 hasConcept C108583219 @default.
- W2955755015 hasConcept C119857082 @default.
- W2955755015 hasConcept C124101348 @default.
- W2955755015 hasConcept C127413603 @default.
- W2955755015 hasConcept C147176958 @default.
- W2955755015 hasConcept C153180895 @default.
- W2955755015 hasConcept C154945302 @default.
- W2955755015 hasConcept C27438332 @default.
- W2955755015 hasConcept C2777831296 @default.
- W2955755015 hasConcept C33441834 @default.
- W2955755015 hasConcept C41008148 @default.
- W2955755015 hasConcept C73555534 @default.