Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955762517> ?p ?o ?g. }
- W2955762517 endingPage "2908" @default.
- W2955762517 startingPage "2882" @default.
- W2955762517 abstract "A mathematical study is described to examine the concurrent influence of thermal radiation and thermal wall slip onthe dissipative magnetohydrodynamic electro-osmotic peristaltic propulsion of a viscous nano-liquid in an asymmetricmicrochannel under the action of an axial electric field and transverse magnetic field. Convective boundary conditionsare incorporated in the model and the case of forced convection is studied i.e. thermal and species (nanoparticle volumefraction) buoyancy forces neglected. The heat source and sink effects are also included and the diffusion fluxapproximation is employed for radiative heat transfer. The transport model comprises the continuity, momentum,energy, nanoparticle volume fraction and electric potential equations with appropriate boundary conditions. These aresimplified by negating the inertial forces and invoking the Debye–Huckel linearization. The resulting governingequations are reduced into a system of non-dimensional simultaneous ordinary differential equations, which is solvedanalytically. Numerical evaluation is conducted with symbolic software (MATLAB). The impact of different controlparameters (Hartmann number, electroosmosis parameter, slip parameter, Helmholtz-Smoluchowski velocity, Biotnumbers, Brinkman number, thermal radiation and Prandtl number) on the heat, mass and momentum characteristics(velocity, temperature, Nusselt number etc.) are presented graphically. Increasing Brinkman number is found toelevate temperature magnitudes. For positive Helmholtz-Smoluchowski velocity (reverse axial electrical field)temperature is strongly reduced whereas for negative Helmholtz-Smoluchowski velocity (aligned axial electrical field)it is significantly elevated. With increasing thermal slip nanoparticle volume fraction is also increased. Heat sourceelevates temperatures whereas heat sink depresses them, across the micro-channel span. Conversely, heat sinkelevates nano-particle volume fraction whereas heat source decreases it. Increasing Hartmann (magnetic) parameterand Prandtl number enhance the nano-particle volume fraction. Furthermore, with increasing radiation parameter theNusselt number is reduced at the extremities of the micro-channel whereas it is elevated at intermediate distances. Theresults reported provide a good insight into biomimetic energy systems exploiting electromagnetics and nanotechnologyand furthermore they furnish a useful benchmark for experimental and more advanced computationalmulti-physics simulations." @default.
- W2955762517 created "2019-07-12" @default.
- W2955762517 creator A5060842917 @default.
- W2955762517 creator A5073830434 @default.
- W2955762517 creator A5082734399 @default.
- W2955762517 creator A5088174453 @default.
- W2955762517 date "2019-07-16" @default.
- W2955762517 modified "2023-10-17" @default.
- W2955762517 title "Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel" @default.
- W2955762517 cites W1158121323 @default.
- W2955762517 cites W1925880528 @default.
- W2955762517 cites W1964148794 @default.
- W2955762517 cites W1974014039 @default.
- W2955762517 cites W1975544468 @default.
- W2955762517 cites W1986729597 @default.
- W2955762517 cites W1995716862 @default.
- W2955762517 cites W1997649695 @default.
- W2955762517 cites W2013126244 @default.
- W2955762517 cites W2030190859 @default.
- W2955762517 cites W2035623813 @default.
- W2955762517 cites W2035722789 @default.
- W2955762517 cites W2036807723 @default.
- W2955762517 cites W2039133119 @default.
- W2955762517 cites W2041236572 @default.
- W2955762517 cites W2043025568 @default.
- W2955762517 cites W2054289014 @default.
- W2955762517 cites W2065604049 @default.
- W2955762517 cites W2075671375 @default.
- W2955762517 cites W2075696448 @default.
- W2955762517 cites W2078705090 @default.
- W2955762517 cites W2088553181 @default.
- W2955762517 cites W2102828800 @default.
- W2955762517 cites W2104841982 @default.
- W2955762517 cites W2123072170 @default.
- W2955762517 cites W2124510213 @default.
- W2955762517 cites W2128922315 @default.
- W2955762517 cites W2144843667 @default.
- W2955762517 cites W2153617101 @default.
- W2955762517 cites W2175533059 @default.
- W2955762517 cites W2177067818 @default.
- W2955762517 cites W2232396472 @default.
- W2955762517 cites W2248874263 @default.
- W2955762517 cites W2280954227 @default.
- W2955762517 cites W2293571641 @default.
- W2955762517 cites W2525557090 @default.
- W2955762517 cites W2549745654 @default.
- W2955762517 cites W2583035489 @default.
- W2955762517 cites W2620502790 @default.
- W2955762517 cites W2623386953 @default.
- W2955762517 cites W2749116675 @default.
- W2955762517 cites W2768352506 @default.
- W2955762517 cites W2768700648 @default.
- W2955762517 cites W2772927800 @default.
- W2955762517 cites W2795102614 @default.
- W2955762517 cites W2891827719 @default.
- W2955762517 cites W2892032497 @default.
- W2955762517 cites W2898446100 @default.
- W2955762517 cites W2899310537 @default.
- W2955762517 cites W2901685067 @default.
- W2955762517 cites W2911173299 @default.
- W2955762517 cites W4232323845 @default.
- W2955762517 doi "https://doi.org/10.1002/htj.21522" @default.
- W2955762517 hasPublicationYear "2019" @default.
- W2955762517 type Work @default.
- W2955762517 sameAs 2955762517 @default.
- W2955762517 citedByCount "42" @default.
- W2955762517 countsByYear W29557625172019 @default.
- W2955762517 countsByYear W29557625172020 @default.
- W2955762517 countsByYear W29557625172021 @default.
- W2955762517 countsByYear W29557625172022 @default.
- W2955762517 countsByYear W29557625172023 @default.
- W2955762517 crossrefType "journal-article" @default.
- W2955762517 hasAuthorship W2955762517A5060842917 @default.
- W2955762517 hasAuthorship W2955762517A5073830434 @default.
- W2955762517 hasAuthorship W2955762517A5082734399 @default.
- W2955762517 hasAuthorship W2955762517A5088174453 @default.
- W2955762517 hasBestOaLocation W29557625172 @default.
- W2955762517 hasConcept C1034443 @default.
- W2955762517 hasConcept C120665830 @default.
- W2955762517 hasConcept C121332964 @default.
- W2955762517 hasConcept C185592680 @default.
- W2955762517 hasConcept C192562407 @default.
- W2955762517 hasConcept C195268267 @default.
- W2955762517 hasConcept C204530211 @default.
- W2955762517 hasConcept C206813253 @default.
- W2955762517 hasConcept C50517652 @default.
- W2955762517 hasConcept C55493867 @default.
- W2955762517 hasConcept C57879066 @default.
- W2955762517 hasConcept C63662833 @default.
- W2955762517 hasConcept C74902906 @default.
- W2955762517 hasConcept C89394759 @default.
- W2955762517 hasConcept C97355855 @default.
- W2955762517 hasConceptScore W2955762517C1034443 @default.
- W2955762517 hasConceptScore W2955762517C120665830 @default.
- W2955762517 hasConceptScore W2955762517C121332964 @default.
- W2955762517 hasConceptScore W2955762517C185592680 @default.
- W2955762517 hasConceptScore W2955762517C192562407 @default.
- W2955762517 hasConceptScore W2955762517C195268267 @default.