Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955768596> ?p ?o ?g. }
- W2955768596 endingPage "2871" @default.
- W2955768596 startingPage "2871" @default.
- W2955768596 abstract "Remote sensing (RS) is currently regarded as one of the standard tools used for mapping invasive and expansive plants for scientific purposes and it is increasingly widely used in nature conservation management. The applicability of RS methods is determined by its limitations and requirements. One of the most important limitations is the species percentage cover at which the classification result is correct and useful for nature conservation. The primary objective, carried out in 2017 in three areas of Poland, was to determine the minimum percentage cover from which it is possible to identify a target species by RS methods. A secondary objective of this research, related to the requirements of the method, was to optimize the set of training polygons for a target species in terms of the number of polygons and abundance percentage cover of the target species. Our method has to be easy to use, effective, and applicable, therefore the analysis was carried out using the basic set of rasters—the first 30 channels after the Minimum Noise Fraction (MNF) transformation (the mosaic of hyperspectral data from HySpex sensors with spectral range 0.4–2.5 µm) and commonly used Random Forest algorithm. The analysis used airborne hyperspectral data with a spatial resolution of 1 m to perform classification of one invasive and three expansive plants—two grasses and two large perennials. On-ground training and validation data sets were collected simultaneously with airborne data collection. When testing different classification scenarios, only the set of training polygons for a target species was changed. Classification results were evaluated based on three methods: accuracy measures (Kappa and F1), true-positive pixels in subclasses with different species cover and compatibility with field mapping. The classification results indicate that to classify the target plant species at the accepted level, the training dataset should contain polygons with a species cover ranging from 80–100%. Training performed only using polygons with a species characterized by a variable, but lower, cover (20–70%) and missing samples in the 80–100% range, led to a map which was not acceptable because of a high overestimation of target species. We achieved effective identification of species in areas where the species cover is above 50%, considering that ecosystems are heterogeneous. The results of these studies developed a methodology of field data acquisition and the necessity of synchronization in the acquisition of airborne data, and training and validation of on-ground sampling." @default.
- W2955768596 created "2019-07-12" @default.
- W2955768596 creator A5008773186 @default.
- W2955768596 creator A5011288815 @default.
- W2955768596 creator A5013056845 @default.
- W2955768596 creator A5021649500 @default.
- W2955768596 creator A5074210350 @default.
- W2955768596 creator A5075832715 @default.
- W2955768596 date "2019-06-28" @default.
- W2955768596 modified "2023-10-07" @default.
- W2955768596 title "Using Airborne Hyperspectral Imaging Spectroscopy to Accurately Monitor Invasive and Expansive Herb Plants: Limitations and Requirements of the Method" @default.
- W2955768596 cites W1565635109 @default.
- W2955768596 cites W1964220763 @default.
- W2955768596 cites W1967400946 @default.
- W2955768596 cites W1991762691 @default.
- W2955768596 cites W2002290084 @default.
- W2955768596 cites W2006955178 @default.
- W2955768596 cites W2027144818 @default.
- W2955768596 cites W2049102882 @default.
- W2955768596 cites W2062128024 @default.
- W2955768596 cites W2065040528 @default.
- W2955768596 cites W2067782748 @default.
- W2955768596 cites W2070029724 @default.
- W2955768596 cites W2070503188 @default.
- W2955768596 cites W2070723226 @default.
- W2955768596 cites W2080116978 @default.
- W2955768596 cites W2085932401 @default.
- W2955768596 cites W2099553813 @default.
- W2955768596 cites W2104896032 @default.
- W2955768596 cites W2119202692 @default.
- W2955768596 cites W2131305829 @default.
- W2955768596 cites W2134407048 @default.
- W2955768596 cites W2139086914 @default.
- W2955768596 cites W2139741891 @default.
- W2955768596 cites W2144178446 @default.
- W2955768596 cites W2151202338 @default.
- W2955768596 cites W2162081314 @default.
- W2955768596 cites W2166307050 @default.
- W2955768596 cites W2168964286 @default.
- W2955768596 cites W2170653440 @default.
- W2955768596 cites W2222769780 @default.
- W2955768596 cites W2292216512 @default.
- W2955768596 cites W2475258442 @default.
- W2955768596 cites W2515306179 @default.
- W2955768596 cites W2519303944 @default.
- W2955768596 cites W2523443514 @default.
- W2955768596 cites W2530384301 @default.
- W2955768596 cites W2551462175 @default.
- W2955768596 cites W2554612373 @default.
- W2955768596 cites W2589453516 @default.
- W2955768596 cites W2604870469 @default.
- W2955768596 cites W2620234846 @default.
- W2955768596 cites W2770532258 @default.
- W2955768596 cites W2904387025 @default.
- W2955768596 cites W2904405630 @default.
- W2955768596 cites W2911964244 @default.
- W2955768596 cites W2914172167 @default.
- W2955768596 doi "https://doi.org/10.3390/s19132871" @default.
- W2955768596 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6651360" @default.
- W2955768596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31261669" @default.
- W2955768596 hasPublicationYear "2019" @default.
- W2955768596 type Work @default.
- W2955768596 sameAs 2955768596 @default.
- W2955768596 citedByCount "13" @default.
- W2955768596 countsByYear W29557685962019 @default.
- W2955768596 countsByYear W29557685962020 @default.
- W2955768596 countsByYear W29557685962021 @default.
- W2955768596 countsByYear W29557685962022 @default.
- W2955768596 countsByYear W29557685962023 @default.
- W2955768596 crossrefType "journal-article" @default.
- W2955768596 hasAuthorship W2955768596A5008773186 @default.
- W2955768596 hasAuthorship W2955768596A5011288815 @default.
- W2955768596 hasAuthorship W2955768596A5013056845 @default.
- W2955768596 hasAuthorship W2955768596A5021649500 @default.
- W2955768596 hasAuthorship W2955768596A5074210350 @default.
- W2955768596 hasAuthorship W2955768596A5075832715 @default.
- W2955768596 hasBestOaLocation W29557685961 @default.
- W2955768596 hasConcept C124101348 @default.
- W2955768596 hasConcept C127413603 @default.
- W2955768596 hasConcept C146978453 @default.
- W2955768596 hasConcept C153180895 @default.
- W2955768596 hasConcept C154945302 @default.
- W2955768596 hasConcept C159078339 @default.
- W2955768596 hasConcept C159985019 @default.
- W2955768596 hasConcept C177264268 @default.
- W2955768596 hasConcept C192562407 @default.
- W2955768596 hasConcept C199360897 @default.
- W2955768596 hasConcept C204323151 @default.
- W2955768596 hasConcept C205649164 @default.
- W2955768596 hasConcept C2780428219 @default.
- W2955768596 hasConcept C2780502288 @default.
- W2955768596 hasConcept C30407753 @default.
- W2955768596 hasConcept C39432304 @default.
- W2955768596 hasConcept C41008148 @default.
- W2955768596 hasConcept C58489278 @default.
- W2955768596 hasConcept C62649853 @default.
- W2955768596 hasConcept C78519656 @default.
- W2955768596 hasConceptScore W2955768596C124101348 @default.