Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955805844> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2955805844 endingPage "103345" @default.
- W2955805844 startingPage "103345" @default.
- W2955805844 abstract "Brain tumor classification is an important problem in computer-aided diagnosis (CAD) for medical applications. This paper focuses on a 3-class classification problem to differentiate among glioma, meningioma and pituitary tumors, which form three prominent types of brain tumor. The proposed classification system adopts the concept of deep transfer learning and uses a pre-trained GoogLeNet to extract features from brain MRI images. Proven classifier models are integrated to classify the extracted features. The experiment follows a patient-level five-fold cross-validation process, on MRI dataset from figshare. The proposed system records a mean classification accuracy of 98%, outperforming all state-of-the-art methods. Other performance measures used in the study are the area under the curve (AUC), precision, recall, F-score and specificity. In addition, the paper addresses a practical aspect by evaluating the system with fewer training samples. The observations of the study imply that transfer learning is a useful technique when the availability of medical images is limited. The paper provides an analytical discussion on misclassifications also." @default.
- W2955805844 created "2019-07-12" @default.
- W2955805844 creator A5044763303 @default.
- W2955805844 creator A5067990419 @default.
- W2955805844 date "2019-08-01" @default.
- W2955805844 modified "2023-10-14" @default.
- W2955805844 title "Brain tumor classification using deep CNN features via transfer learning" @default.
- W2955805844 cites W2163345210 @default.
- W2955805844 cites W2165698076 @default.
- W2955805844 cites W2182098131 @default.
- W2955805844 cites W2416025122 @default.
- W2955805844 cites W2559881210 @default.
- W2955805844 cites W2576764453 @default.
- W2955805844 cites W2744130673 @default.
- W2955805844 cites W2773164951 @default.
- W2955805844 cites W2791822495 @default.
- W2955805844 cites W2799291955 @default.
- W2955805844 cites W2892961888 @default.
- W2955805844 cites W2895992674 @default.
- W2955805844 cites W2900530921 @default.
- W2955805844 cites W2906302663 @default.
- W2955805844 cites W2907148404 @default.
- W2955805844 cites W2908875379 @default.
- W2955805844 cites W2910541852 @default.
- W2955805844 doi "https://doi.org/10.1016/j.compbiomed.2019.103345" @default.
- W2955805844 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31279167" @default.
- W2955805844 hasPublicationYear "2019" @default.
- W2955805844 type Work @default.
- W2955805844 sameAs 2955805844 @default.
- W2955805844 citedByCount "524" @default.
- W2955805844 countsByYear W29558058442019 @default.
- W2955805844 countsByYear W29558058442020 @default.
- W2955805844 countsByYear W29558058442021 @default.
- W2955805844 countsByYear W29558058442022 @default.
- W2955805844 countsByYear W29558058442023 @default.
- W2955805844 crossrefType "journal-article" @default.
- W2955805844 hasAuthorship W2955805844A5044763303 @default.
- W2955805844 hasAuthorship W2955805844A5067990419 @default.
- W2955805844 hasConcept C100660578 @default.
- W2955805844 hasConcept C108583219 @default.
- W2955805844 hasConcept C119857082 @default.
- W2955805844 hasConcept C127413603 @default.
- W2955805844 hasConcept C138885662 @default.
- W2955805844 hasConcept C142724271 @default.
- W2955805844 hasConcept C150899416 @default.
- W2955805844 hasConcept C153180895 @default.
- W2955805844 hasConcept C154945302 @default.
- W2955805844 hasConcept C194789388 @default.
- W2955805844 hasConcept C199639397 @default.
- W2955805844 hasConcept C2778227246 @default.
- W2955805844 hasConcept C2779130545 @default.
- W2955805844 hasConcept C41008148 @default.
- W2955805844 hasConcept C41895202 @default.
- W2955805844 hasConcept C502942594 @default.
- W2955805844 hasConcept C71924100 @default.
- W2955805844 hasConcept C95623464 @default.
- W2955805844 hasConceptScore W2955805844C100660578 @default.
- W2955805844 hasConceptScore W2955805844C108583219 @default.
- W2955805844 hasConceptScore W2955805844C119857082 @default.
- W2955805844 hasConceptScore W2955805844C127413603 @default.
- W2955805844 hasConceptScore W2955805844C138885662 @default.
- W2955805844 hasConceptScore W2955805844C142724271 @default.
- W2955805844 hasConceptScore W2955805844C150899416 @default.
- W2955805844 hasConceptScore W2955805844C153180895 @default.
- W2955805844 hasConceptScore W2955805844C154945302 @default.
- W2955805844 hasConceptScore W2955805844C194789388 @default.
- W2955805844 hasConceptScore W2955805844C199639397 @default.
- W2955805844 hasConceptScore W2955805844C2778227246 @default.
- W2955805844 hasConceptScore W2955805844C2779130545 @default.
- W2955805844 hasConceptScore W2955805844C41008148 @default.
- W2955805844 hasConceptScore W2955805844C41895202 @default.
- W2955805844 hasConceptScore W2955805844C502942594 @default.
- W2955805844 hasConceptScore W2955805844C71924100 @default.
- W2955805844 hasConceptScore W2955805844C95623464 @default.
- W2955805844 hasLocation W29558058441 @default.
- W2955805844 hasLocation W29558058442 @default.
- W2955805844 hasOpenAccess W2955805844 @default.
- W2955805844 hasPrimaryLocation W29558058441 @default.
- W2955805844 hasRelatedWork W2234322404 @default.
- W2955805844 hasRelatedWork W2410116073 @default.
- W2955805844 hasRelatedWork W2887359201 @default.
- W2955805844 hasRelatedWork W3208778134 @default.
- W2955805844 hasRelatedWork W4220833452 @default.
- W2955805844 hasRelatedWork W4223451915 @default.
- W2955805844 hasRelatedWork W4308767530 @default.
- W2955805844 hasRelatedWork W4386951147 @default.
- W2955805844 hasRelatedWork W637098845 @default.
- W2955805844 hasRelatedWork W3005931108 @default.
- W2955805844 hasVolume "111" @default.
- W2955805844 isParatext "false" @default.
- W2955805844 isRetracted "false" @default.
- W2955805844 magId "2955805844" @default.
- W2955805844 workType "article" @default.