Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955811034> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2955811034 endingPage "317" @default.
- W2955811034 startingPage "298" @default.
- W2955811034 abstract "The increasing conflicts between skateboarders and pedestrians on the campuses have caused safety concerns. Although traffic planners on campus usually did not consider skateboarding into planning due to the lack of historical skateboarding data. The traditional data collection method such as manual counting or video detection took a lot of effort and could only provide macrolevel skateboarding data. Therefore, this research presented a new approach for skateboarder detection using the roadside LiDAR sensor. A two-stage classification method was developed to distinguish skateboarders and other road users. The first stage was to classify motor vehicles and nonvehicles (pedestrians, bicycles, and skateboarders). Then the second step was to distinguish skateboarders from pedestrians and bicycles. The proposed procedure was evaluated using real-world data on campus. The results showed that the proposed procedure can detect the skateboarder with the overall accuracy of 89.5%. The data collected in the real world showed that the speed of the skateboarder was usually higher than the pedestrian and lower than the bicycle. The skateboarding information extracted from the proposed detection method could be applied for skateboarder behavior analysis, volume counting, and safety analysis. A level-based procedure to reinforce the safety between skateboarders and pedestrians was recommended." @default.
- W2955811034 created "2019-07-12" @default.
- W2955811034 creator A5001645437 @default.
- W2955811034 creator A5011726721 @default.
- W2955811034 creator A5023258798 @default.
- W2955811034 creator A5028735993 @default.
- W2955811034 creator A5078176055 @default.
- W2955811034 creator A5086279122 @default.
- W2955811034 date "2019-07-02" @default.
- W2955811034 modified "2023-09-27" @default.
- W2955811034 title "An automatic skateboarder detection method with roadside LiDAR data" @default.
- W2955811034 cites W1943688421 @default.
- W2955811034 cites W2015112491 @default.
- W2955811034 cites W2041330605 @default.
- W2955811034 cites W2145372129 @default.
- W2955811034 cites W2151588153 @default.
- W2955811034 cites W2163391040 @default.
- W2955811034 cites W2166251495 @default.
- W2955811034 cites W2342737791 @default.
- W2955811034 cites W2418256651 @default.
- W2955811034 cites W2425857188 @default.
- W2955811034 cites W2474670469 @default.
- W2955811034 cites W2592174003 @default.
- W2955811034 cites W2778166469 @default.
- W2955811034 cites W2792402634 @default.
- W2955811034 cites W2794631752 @default.
- W2955811034 cites W2805899829 @default.
- W2955811034 cites W2886785731 @default.
- W2955811034 cites W2894415171 @default.
- W2955811034 cites W2898988942 @default.
- W2955811034 cites W2904103348 @default.
- W2955811034 cites W2909746114 @default.
- W2955811034 cites W2920128915 @default.
- W2955811034 cites W3189333927 @default.
- W2955811034 cites W4246895953 @default.
- W2955811034 cites W59273115 @default.
- W2955811034 doi "https://doi.org/10.1080/19439962.2019.1633573" @default.
- W2955811034 hasPublicationYear "2019" @default.
- W2955811034 type Work @default.
- W2955811034 sameAs 2955811034 @default.
- W2955811034 citedByCount "2" @default.
- W2955811034 countsByYear W29558110342020 @default.
- W2955811034 crossrefType "journal-article" @default.
- W2955811034 hasAuthorship W2955811034A5001645437 @default.
- W2955811034 hasAuthorship W2955811034A5011726721 @default.
- W2955811034 hasAuthorship W2955811034A5023258798 @default.
- W2955811034 hasAuthorship W2955811034A5028735993 @default.
- W2955811034 hasAuthorship W2955811034A5078176055 @default.
- W2955811034 hasAuthorship W2955811034A5086279122 @default.
- W2955811034 hasConcept C105795698 @default.
- W2955811034 hasConcept C124101348 @default.
- W2955811034 hasConcept C127413603 @default.
- W2955811034 hasConcept C133462117 @default.
- W2955811034 hasConcept C205649164 @default.
- W2955811034 hasConcept C22212356 @default.
- W2955811034 hasConcept C2777113093 @default.
- W2955811034 hasConcept C33923547 @default.
- W2955811034 hasConcept C41008148 @default.
- W2955811034 hasConcept C51399673 @default.
- W2955811034 hasConcept C62649853 @default.
- W2955811034 hasConceptScore W2955811034C105795698 @default.
- W2955811034 hasConceptScore W2955811034C124101348 @default.
- W2955811034 hasConceptScore W2955811034C127413603 @default.
- W2955811034 hasConceptScore W2955811034C133462117 @default.
- W2955811034 hasConceptScore W2955811034C205649164 @default.
- W2955811034 hasConceptScore W2955811034C22212356 @default.
- W2955811034 hasConceptScore W2955811034C2777113093 @default.
- W2955811034 hasConceptScore W2955811034C33923547 @default.
- W2955811034 hasConceptScore W2955811034C41008148 @default.
- W2955811034 hasConceptScore W2955811034C51399673 @default.
- W2955811034 hasConceptScore W2955811034C62649853 @default.
- W2955811034 hasIssue "3" @default.
- W2955811034 hasLocation W29558110341 @default.
- W2955811034 hasOpenAccess W2955811034 @default.
- W2955811034 hasPrimaryLocation W29558110341 @default.
- W2955811034 hasRelatedWork W1998372340 @default.
- W2955811034 hasRelatedWork W2178798912 @default.
- W2955811034 hasRelatedWork W2592735749 @default.
- W2955811034 hasRelatedWork W2973594161 @default.
- W2955811034 hasRelatedWork W3002694672 @default.
- W2955811034 hasRelatedWork W3172487415 @default.
- W2955811034 hasRelatedWork W566791342 @default.
- W2955811034 hasRelatedWork W602587028 @default.
- W2955811034 hasRelatedWork W626979780 @default.
- W2955811034 hasRelatedWork W802735427 @default.
- W2955811034 hasVolume "13" @default.
- W2955811034 isParatext "false" @default.
- W2955811034 isRetracted "false" @default.
- W2955811034 magId "2955811034" @default.
- W2955811034 workType "article" @default.