Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955846576> ?p ?o ?g. }
- W2955846576 endingPage "2987" @default.
- W2955846576 startingPage "2987" @default.
- W2955846576 abstract "A convolutional neural network (CNN) algorithm was developed to retrieve the land surface temperature (LST) from Advanced Microwave Scanning Radiometer 2 (AMSR2) data in China. Reference data were selected using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product to overcome the problem related to the need for synchronous ground observation data. The AMSR2 brightness temperature (TB) data and MODIS surface temperature data were randomly divided into training and test datasets, and a CNN was constructed to simulate passive microwave radiation transmission to invert the surface temperature. The twelve V/H channel combinations (7.3, 10.65, 18.7, 23.8, 36.5, 89 GHz) resulted in the most stable and accurate CNN retrieval model. Vertical polarizations performed better than horizontal polarizations; however, because CNNs rely heavily on large amounts of data, the combination of vertical and horizontal polarizations performed better than a single polarization. The retrievals in different regions indicated that the CNN accuracy was highest over large bare land areas. A comparison of the retrieval results with ground measurement data from meteorological stations yielded R2 = 0.987, RMSE = 2.69 K, and an average relative error of 2.57 K, which indicated that the accuracy of the CNN LST retrieval algorithm was high and the retrieval results can be applied to long-term LST sequence analysis in China." @default.
- W2955846576 created "2019-07-12" @default.
- W2955846576 creator A5004129455 @default.
- W2955846576 creator A5006636279 @default.
- W2955846576 creator A5041249333 @default.
- W2955846576 creator A5058040417 @default.
- W2955846576 creator A5077058917 @default.
- W2955846576 creator A5082802895 @default.
- W2955846576 creator A5088157563 @default.
- W2955846576 date "2019-07-06" @default.
- W2955846576 modified "2023-10-13" @default.
- W2955846576 title "Deep Learning Convolutional Neural Network for the Retrieval of Land Surface Temperature from AMSR2 Data in China" @default.
- W2955846576 cites W1500410627 @default.
- W2955846576 cites W1871385855 @default.
- W2955846576 cites W1965692465 @default.
- W2955846576 cites W1976652722 @default.
- W2955846576 cites W1992071871 @default.
- W2955846576 cites W1995167593 @default.
- W2955846576 cites W2016044589 @default.
- W2955846576 cites W2026337749 @default.
- W2955846576 cites W2029316659 @default.
- W2955846576 cites W2051893691 @default.
- W2955846576 cites W2055660411 @default.
- W2955846576 cites W2058529145 @default.
- W2955846576 cites W2058602417 @default.
- W2955846576 cites W2075573792 @default.
- W2955846576 cites W2078669597 @default.
- W2955846576 cites W2093623508 @default.
- W2955846576 cites W2099754454 @default.
- W2955846576 cites W2100401723 @default.
- W2955846576 cites W2103541076 @default.
- W2955846576 cites W2114235122 @default.
- W2955846576 cites W2116310314 @default.
- W2955846576 cites W2120340076 @default.
- W2955846576 cites W2121649497 @default.
- W2955846576 cites W2147800946 @default.
- W2955846576 cites W2159200140 @default.
- W2955846576 cites W2170107986 @default.
- W2955846576 cites W2172174961 @default.
- W2955846576 cites W2348665375 @default.
- W2955846576 cites W2582059183 @default.
- W2955846576 cites W2760752962 @default.
- W2955846576 cites W2795714960 @default.
- W2955846576 cites W2919115771 @default.
- W2955846576 cites W4205947740 @default.
- W2955846576 cites W2914145411 @default.
- W2955846576 doi "https://doi.org/10.3390/s19132987" @default.
- W2955846576 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6651167" @default.
- W2955846576 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31284617" @default.
- W2955846576 hasPublicationYear "2019" @default.
- W2955846576 type Work @default.
- W2955846576 sameAs 2955846576 @default.
- W2955846576 citedByCount "25" @default.
- W2955846576 countsByYear W29558465762019 @default.
- W2955846576 countsByYear W29558465762020 @default.
- W2955846576 countsByYear W29558465762021 @default.
- W2955846576 countsByYear W29558465762022 @default.
- W2955846576 countsByYear W29558465762023 @default.
- W2955846576 crossrefType "journal-article" @default.
- W2955846576 hasAuthorship W2955846576A5004129455 @default.
- W2955846576 hasAuthorship W2955846576A5006636279 @default.
- W2955846576 hasAuthorship W2955846576A5041249333 @default.
- W2955846576 hasAuthorship W2955846576A5058040417 @default.
- W2955846576 hasAuthorship W2955846576A5077058917 @default.
- W2955846576 hasAuthorship W2955846576A5082802895 @default.
- W2955846576 hasAuthorship W2955846576A5088157563 @default.
- W2955846576 hasBestOaLocation W29558465761 @default.
- W2955846576 hasConcept C120189094 @default.
- W2955846576 hasConcept C121332964 @default.
- W2955846576 hasConcept C127313418 @default.
- W2955846576 hasConcept C1276947 @default.
- W2955846576 hasConcept C153294291 @default.
- W2955846576 hasConcept C154945302 @default.
- W2955846576 hasConcept C19269812 @default.
- W2955846576 hasConcept C205649164 @default.
- W2955846576 hasConcept C2777007095 @default.
- W2955846576 hasConcept C39432304 @default.
- W2955846576 hasConcept C41008148 @default.
- W2955846576 hasConcept C44838205 @default.
- W2955846576 hasConcept C50644808 @default.
- W2955846576 hasConcept C53802167 @default.
- W2955846576 hasConcept C62649853 @default.
- W2955846576 hasConcept C76155785 @default.
- W2955846576 hasConcept C81363708 @default.
- W2955846576 hasConceptScore W2955846576C120189094 @default.
- W2955846576 hasConceptScore W2955846576C121332964 @default.
- W2955846576 hasConceptScore W2955846576C127313418 @default.
- W2955846576 hasConceptScore W2955846576C1276947 @default.
- W2955846576 hasConceptScore W2955846576C153294291 @default.
- W2955846576 hasConceptScore W2955846576C154945302 @default.
- W2955846576 hasConceptScore W2955846576C19269812 @default.
- W2955846576 hasConceptScore W2955846576C205649164 @default.
- W2955846576 hasConceptScore W2955846576C2777007095 @default.
- W2955846576 hasConceptScore W2955846576C39432304 @default.
- W2955846576 hasConceptScore W2955846576C41008148 @default.
- W2955846576 hasConceptScore W2955846576C44838205 @default.
- W2955846576 hasConceptScore W2955846576C50644808 @default.
- W2955846576 hasConceptScore W2955846576C53802167 @default.