Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955871703> ?p ?o ?g. }
- W2955871703 abstract "Behavioral economics changed the way we think about market participants and revolutionized policy-making by introducing the concept of choice architecture. However, even though effective on the level of a population, interventions from behavioral economics, nudges, are often characterized by weak generalisation as they struggle on the level of individuals. Recent developments in data science, artificial intelligence (AI) and machine learning (ML) have shown ability to alleviate some of the problems of weak generalisation by providing tools and methods that result in models with stronger predictive power. This paper aims to describe how ML and AI can work with behavioral economics to support and augment decision-making and inform policy decisions by designing personalized interventions, assuming that enough personalized traits and psychological variables can be sampled." @default.
- W2955871703 created "2019-07-12" @default.
- W2955871703 creator A5035241072 @default.
- W2955871703 creator A5045963738 @default.
- W2955871703 date "2019-07-03" @default.
- W2955871703 modified "2023-09-27" @default.
- W2955871703 title "Machine learning and behavioral economics for personalized choice architecture" @default.
- W2955871703 cites W1505251695 @default.
- W2955871703 cites W1528102079 @default.
- W2955871703 cites W1554944419 @default.
- W2955871703 cites W158727920 @default.
- W2955871703 cites W1901616594 @default.
- W2955871703 cites W2024140722 @default.
- W2955871703 cites W2053680135 @default.
- W2955871703 cites W2095655043 @default.
- W2955871703 cites W2103780778 @default.
- W2955871703 cites W2117546413 @default.
- W2955871703 cites W2122410182 @default.
- W2955871703 cites W2128428930 @default.
- W2955871703 cites W2130546085 @default.
- W2955871703 cites W2133757074 @default.
- W2955871703 cites W2139343462 @default.
- W2955871703 cites W2147449010 @default.
- W2955871703 cites W2148962857 @default.
- W2955871703 cites W2155419203 @default.
- W2955871703 cites W2162670686 @default.
- W2955871703 cites W2167200264 @default.
- W2955871703 cites W2169683662 @default.
- W2955871703 cites W2173315138 @default.
- W2955871703 cites W2175465469 @default.
- W2955871703 cites W2207780529 @default.
- W2955871703 cites W2246361553 @default.
- W2955871703 cites W2269870390 @default.
- W2955871703 cites W2295745632 @default.
- W2955871703 cites W2302305491 @default.
- W2955871703 cites W2337082154 @default.
- W2955871703 cites W2344786740 @default.
- W2955871703 cites W2460937040 @default.
- W2955871703 cites W2462689321 @default.
- W2955871703 cites W2466381818 @default.
- W2955871703 cites W2474421929 @default.
- W2955871703 cites W2513506629 @default.
- W2955871703 cites W2513604209 @default.
- W2955871703 cites W2531487051 @default.
- W2955871703 cites W2551317447 @default.
- W2955871703 cites W2559394418 @default.
- W2955871703 cites W2566818341 @default.
- W2955871703 cites W2569558844 @default.
- W2955871703 cites W2573660794 @default.
- W2955871703 cites W2578867688 @default.
- W2955871703 cites W2584324318 @default.
- W2955871703 cites W2584924584 @default.
- W2955871703 cites W2586702902 @default.
- W2955871703 cites W2610886376 @default.
- W2955871703 cites W2726198599 @default.
- W2955871703 cites W2747592475 @default.
- W2955871703 cites W2753810900 @default.
- W2955871703 cites W2753845591 @default.
- W2955871703 cites W2770031122 @default.
- W2955871703 cites W2775759377 @default.
- W2955871703 cites W2776393547 @default.
- W2955871703 cites W2785011159 @default.
- W2955871703 cites W2787225861 @default.
- W2955871703 cites W2884430236 @default.
- W2955871703 cites W2890658355 @default.
- W2955871703 cites W2892282242 @default.
- W2955871703 cites W2896252141 @default.
- W2955871703 cites W2898373315 @default.
- W2955871703 cites W2900885930 @default.
- W2955871703 cites W2911964244 @default.
- W2955871703 cites W2916338083 @default.
- W2955871703 cites W2919115771 @default.
- W2955871703 cites W2924551358 @default.
- W2955871703 cites W2932091506 @default.
- W2955871703 cites W2933118606 @default.
- W2955871703 cites W2937524244 @default.
- W2955871703 cites W2951501516 @default.
- W2955871703 cites W2963174898 @default.
- W2955871703 cites W2963351127 @default.
- W2955871703 cites W2963615251 @default.
- W2955871703 cites W2963784900 @default.
- W2955871703 cites W3122149192 @default.
- W2955871703 cites W3123169803 @default.
- W2955871703 cites W3124153078 @default.
- W2955871703 cites W3124211044 @default.
- W2955871703 cites W3125979999 @default.
- W2955871703 cites W3142489146 @default.
- W2955871703 cites W627438804 @default.
- W2955871703 hasPublicationYear "2019" @default.
- W2955871703 type Work @default.
- W2955871703 sameAs 2955871703 @default.
- W2955871703 citedByCount "0" @default.
- W2955871703 crossrefType "posted-content" @default.
- W2955871703 hasAuthorship W2955871703A5035241072 @default.
- W2955871703 hasAuthorship W2955871703A5045963738 @default.
- W2955871703 hasConcept C109574028 @default.
- W2955871703 hasConcept C111472728 @default.
- W2955871703 hasConcept C118552586 @default.
- W2955871703 hasConcept C119857082 @default.
- W2955871703 hasConcept C123657996 @default.