Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955881471> ?p ?o ?g. }
- W2955881471 endingPage "e01882" @default.
- W2955881471 startingPage "e01882" @default.
- W2955881471 abstract "The specific heat capacity of nanofluids (CPnf) is a fundamental thermophysical property that measures the heat storage capacity of the nanofluids. CPnf is usually determined through experimental measurement. As it is known, experimental procedures are characterised with some complexities, which include, the challenge of preparing stable nanofluids and relatively long periods to conduct experiments. So far, two correlations have been developed to estimate the CPnf. The accuracies of these models are still subject to further improvement for many nanofluid compositions. This study presents a four-input support vector regression (SVR) model hybridized with a Bayesian algorithm to predict the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids. The bayesian algorithm was used to obtain the optimum SVR hyperparameters. 189 experimental data collected from published literature was used for the model development. The proposed model exhibits low average absolute relative deviation (AARD) and a high correlation coefficient (r) of 0.40 and 99.53 %, respectively. In addition, we analysed the accuracies of the existing analytical models on the considered nanofluid compositions. The model based on the thermal equilibrium between the nanoparticles and base fluid (model II) show good agreement with experimental results while the model based on simple mixing rule (model I) overestimated the specific heat capacity of the nanofluids. To further validate the superiority of the proposed technique over the existing analytical models, we compared various statistical errors for the three models. The AARD for the BSVR, model II, and model I are 0.40, 0.82 and 4.97, respectively. This clearly shows that the model developed has much better prediction accuracy than existing models in predicting the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids. We believe the presented model will be important in the design of nanofluid-based applications due to its improved accuracy." @default.
- W2955881471 created "2019-07-12" @default.
- W2955881471 creator A5001079600 @default.
- W2955881471 creator A5001829669 @default.
- W2955881471 creator A5002332177 @default.
- W2955881471 creator A5009871490 @default.
- W2955881471 creator A5049344357 @default.
- W2955881471 creator A5057140088 @default.
- W2955881471 date "2019-06-01" @default.
- W2955881471 modified "2023-10-14" @default.
- W2955881471 title "Development of a predictive model for estimating the specific heat capacity of metallic oxides/ethylene glycol-based nanofluids using support vector regression" @default.
- W2955881471 cites W1795761821 @default.
- W2955881471 cites W1966695309 @default.
- W2955881471 cites W1984002118 @default.
- W2955881471 cites W2029748544 @default.
- W2955881471 cites W2041205195 @default.
- W2955881471 cites W2090957741 @default.
- W2955881471 cites W2099389381 @default.
- W2955881471 cites W2106962807 @default.
- W2955881471 cites W2191023467 @default.
- W2955881471 cites W2283895674 @default.
- W2955881471 cites W2331725144 @default.
- W2955881471 cites W2342989644 @default.
- W2955881471 cites W2441917113 @default.
- W2955881471 cites W2468671988 @default.
- W2955881471 cites W2510325377 @default.
- W2955881471 cites W2555219763 @default.
- W2955881471 cites W2584144234 @default.
- W2955881471 cites W2594182135 @default.
- W2955881471 cites W2741296030 @default.
- W2955881471 cites W2754583597 @default.
- W2955881471 cites W2767416524 @default.
- W2955881471 cites W2795969712 @default.
- W2955881471 cites W2801688348 @default.
- W2955881471 cites W2804755586 @default.
- W2955881471 cites W2909793142 @default.
- W2955881471 cites W2922494806 @default.
- W2955881471 cites W2935178561 @default.
- W2955881471 cites W2945600009 @default.
- W2955881471 cites W2947183082 @default.
- W2955881471 cites W4239510810 @default.
- W2955881471 cites W4239944110 @default.
- W2955881471 doi "https://doi.org/10.1016/j.heliyon.2019.e01882" @default.
- W2955881471 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6600000" @default.
- W2955881471 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31304407" @default.
- W2955881471 hasPublicationYear "2019" @default.
- W2955881471 type Work @default.
- W2955881471 sameAs 2955881471 @default.
- W2955881471 citedByCount "21" @default.
- W2955881471 countsByYear W29558814712020 @default.
- W2955881471 countsByYear W29558814712021 @default.
- W2955881471 countsByYear W29558814712022 @default.
- W2955881471 countsByYear W29558814712023 @default.
- W2955881471 crossrefType "journal-article" @default.
- W2955881471 hasAuthorship W2955881471A5001079600 @default.
- W2955881471 hasAuthorship W2955881471A5001829669 @default.
- W2955881471 hasAuthorship W2955881471A5002332177 @default.
- W2955881471 hasAuthorship W2955881471A5009871490 @default.
- W2955881471 hasAuthorship W2955881471A5049344357 @default.
- W2955881471 hasAuthorship W2955881471A5057140088 @default.
- W2955881471 hasBestOaLocation W29558814711 @default.
- W2955881471 hasConcept C105795698 @default.
- W2955881471 hasConcept C119857082 @default.
- W2955881471 hasConcept C120934525 @default.
- W2955881471 hasConcept C121332964 @default.
- W2955881471 hasConcept C122383733 @default.
- W2955881471 hasConcept C12267149 @default.
- W2955881471 hasConcept C127413603 @default.
- W2955881471 hasConcept C192562407 @default.
- W2955881471 hasConcept C204530211 @default.
- W2955881471 hasConcept C21946209 @default.
- W2955881471 hasConcept C2777516009 @default.
- W2955881471 hasConcept C33923547 @default.
- W2955881471 hasConcept C41008148 @default.
- W2955881471 hasConcept C42360764 @default.
- W2955881471 hasConcept C60205243 @default.
- W2955881471 hasConcept C97355855 @default.
- W2955881471 hasConceptScore W2955881471C105795698 @default.
- W2955881471 hasConceptScore W2955881471C119857082 @default.
- W2955881471 hasConceptScore W2955881471C120934525 @default.
- W2955881471 hasConceptScore W2955881471C121332964 @default.
- W2955881471 hasConceptScore W2955881471C122383733 @default.
- W2955881471 hasConceptScore W2955881471C12267149 @default.
- W2955881471 hasConceptScore W2955881471C127413603 @default.
- W2955881471 hasConceptScore W2955881471C192562407 @default.
- W2955881471 hasConceptScore W2955881471C204530211 @default.
- W2955881471 hasConceptScore W2955881471C21946209 @default.
- W2955881471 hasConceptScore W2955881471C2777516009 @default.
- W2955881471 hasConceptScore W2955881471C33923547 @default.
- W2955881471 hasConceptScore W2955881471C41008148 @default.
- W2955881471 hasConceptScore W2955881471C42360764 @default.
- W2955881471 hasConceptScore W2955881471C60205243 @default.
- W2955881471 hasConceptScore W2955881471C97355855 @default.
- W2955881471 hasFunder F4320321709 @default.
- W2955881471 hasFunder F4320322323 @default.
- W2955881471 hasIssue "6" @default.
- W2955881471 hasLocation W29558814711 @default.
- W2955881471 hasLocation W29558814712 @default.