Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955884009> ?p ?o ?g. }
- W2955884009 endingPage "1622" @default.
- W2955884009 startingPage "1611" @default.
- W2955884009 abstract "The incidence of pancreatic neuroendocrine tumors (PNETs) is now increasing rapidly. The tumor grade of PNETs significantly affects the treatment strategy and prognosis. However, there is still no effective way to non-invasively classify PNET grades. Machine learning (ML) algorithms have shown potential in improving the prediction accuracy using comprehensive data.To provide a ML approach to predict PNET tumor grade using clinical data.The clinical data of histologically confirmed PNET cases between 2012 and 2018 were collected. A method of minimum P for the Chi-square test was used to divide the continuous variables into binary variables. The continuous variables were transformed into binary variables according to the cutoff value, while the P value was minimum. Four classical supervised ML models, including logistic regression, support vector machine (SVM), linear discriminant analysis (LDA) and multi-layer perceptron (MLP) were trained by clinical data, and the models were labeled with the pathological tumor grade of each PNET patient. The performance of each model, including the weight of the different parameters, were evaluated.In total, 91 PNET cases were included in this study, in which 32 were G1, 48 were G2 and 11 were G3. The results showed that there were significant differences among the clinical parameters of patients with different grades. Patients with higher grades tended to have higher values of total bilirubin, alpha fetoprotein, carcinoembryonic antigen, carbohydrate antigen 19-9 and carbohydrate antigen 72-4. Among the models we used, LDA performed best in predicting the PNET tumor grade. Meanwhile, MLP had the highest recall rate for G3 cases. All of the models stabilized when the sample size was over 70 percent of the total, except for SVM. Different parameters varied in affecting the outcomes of the models. Overall, alanine transaminase, total bilirubin, carcinoembryonic antigen, carbohydrate antigen 19-9 and carbohydrate antigen 72-4 affected the outcome greater than other parameters.ML could be a simple and effective method in non-invasively predicting PNET grades by using the routine data obtained from the results of biochemical and tumor markers." @default.
- W2955884009 created "2019-07-12" @default.
- W2955884009 creator A5001669110 @default.
- W2955884009 creator A5017858078 @default.
- W2955884009 creator A5018636031 @default.
- W2955884009 creator A5072474435 @default.
- W2955884009 creator A5072495806 @default.
- W2955884009 date "2019-07-06" @default.
- W2955884009 modified "2023-10-14" @default.
- W2955884009 title "Leveraging machine learning techniques for predicting pancreatic neuroendocrine tumor grades using biochemical and tumor markers" @default.
- W2955884009 cites W1035864403 @default.
- W2955884009 cites W1901616594 @default.
- W2955884009 cites W1964830499 @default.
- W2955884009 cites W1968452917 @default.
- W2955884009 cites W1977807071 @default.
- W2955884009 cites W1995937139 @default.
- W2955884009 cites W2045555495 @default.
- W2955884009 cites W2071851324 @default.
- W2955884009 cites W2080769559 @default.
- W2955884009 cites W2118286367 @default.
- W2955884009 cites W2138263042 @default.
- W2955884009 cites W2143426320 @default.
- W2955884009 cites W2143826137 @default.
- W2955884009 cites W2170350541 @default.
- W2955884009 cites W2410568505 @default.
- W2955884009 cites W2413941661 @default.
- W2955884009 cites W2494683952 @default.
- W2955884009 cites W2737107675 @default.
- W2955884009 cites W2746984925 @default.
- W2955884009 cites W3124158594 @default.
- W2955884009 cites W3140154880 @default.
- W2955884009 cites W3025183542 @default.
- W2955884009 doi "https://doi.org/10.12998/wjcc.v7.i13.1611" @default.
- W2955884009 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6658377" @default.
- W2955884009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31367620" @default.
- W2955884009 hasPublicationYear "2019" @default.
- W2955884009 type Work @default.
- W2955884009 sameAs 2955884009 @default.
- W2955884009 citedByCount "7" @default.
- W2955884009 countsByYear W29558840092021 @default.
- W2955884009 countsByYear W29558840092022 @default.
- W2955884009 countsByYear W29558840092023 @default.
- W2955884009 crossrefType "journal-article" @default.
- W2955884009 hasAuthorship W2955884009A5001669110 @default.
- W2955884009 hasAuthorship W2955884009A5017858078 @default.
- W2955884009 hasAuthorship W2955884009A5018636031 @default.
- W2955884009 hasAuthorship W2955884009A5072474435 @default.
- W2955884009 hasAuthorship W2955884009A5072495806 @default.
- W2955884009 hasBestOaLocation W29558840091 @default.
- W2955884009 hasConcept C11413529 @default.
- W2955884009 hasConcept C119857082 @default.
- W2955884009 hasConcept C121608353 @default.
- W2955884009 hasConcept C126322002 @default.
- W2955884009 hasConcept C143998085 @default.
- W2955884009 hasConcept C151956035 @default.
- W2955884009 hasConcept C154945302 @default.
- W2955884009 hasConcept C179717631 @default.
- W2955884009 hasConcept C2777387746 @default.
- W2955884009 hasConcept C2779066768 @default.
- W2955884009 hasConcept C33923547 @default.
- W2955884009 hasConcept C41008148 @default.
- W2955884009 hasConcept C50644808 @default.
- W2955884009 hasConcept C60908668 @default.
- W2955884009 hasConcept C69738355 @default.
- W2955884009 hasConcept C71924100 @default.
- W2955884009 hasConceptScore W2955884009C11413529 @default.
- W2955884009 hasConceptScore W2955884009C119857082 @default.
- W2955884009 hasConceptScore W2955884009C121608353 @default.
- W2955884009 hasConceptScore W2955884009C126322002 @default.
- W2955884009 hasConceptScore W2955884009C143998085 @default.
- W2955884009 hasConceptScore W2955884009C151956035 @default.
- W2955884009 hasConceptScore W2955884009C154945302 @default.
- W2955884009 hasConceptScore W2955884009C179717631 @default.
- W2955884009 hasConceptScore W2955884009C2777387746 @default.
- W2955884009 hasConceptScore W2955884009C2779066768 @default.
- W2955884009 hasConceptScore W2955884009C33923547 @default.
- W2955884009 hasConceptScore W2955884009C41008148 @default.
- W2955884009 hasConceptScore W2955884009C50644808 @default.
- W2955884009 hasConceptScore W2955884009C60908668 @default.
- W2955884009 hasConceptScore W2955884009C69738355 @default.
- W2955884009 hasConceptScore W2955884009C71924100 @default.
- W2955884009 hasIssue "13" @default.
- W2955884009 hasLocation W29558840091 @default.
- W2955884009 hasLocation W29558840092 @default.
- W2955884009 hasLocation W29558840093 @default.
- W2955884009 hasLocation W29558840094 @default.
- W2955884009 hasOpenAccess W2955884009 @default.
- W2955884009 hasPrimaryLocation W29558840091 @default.
- W2955884009 hasRelatedWork W2161649813 @default.
- W2955884009 hasRelatedWork W2924231309 @default.
- W2955884009 hasRelatedWork W2940336242 @default.
- W2955884009 hasRelatedWork W2941320171 @default.
- W2955884009 hasRelatedWork W3007470113 @default.
- W2955884009 hasRelatedWork W3185179407 @default.
- W2955884009 hasRelatedWork W4221088574 @default.
- W2955884009 hasRelatedWork W4231994957 @default.
- W2955884009 hasRelatedWork W4245248941 @default.
- W2955884009 hasRelatedWork W4285741730 @default.