Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955932350> ?p ?o ?g. }
- W2955932350 endingPage "101758" @default.
- W2955932350 startingPage "101758" @default.
- W2955932350 abstract "Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g., coils sensitivity maps or reconstruction coefficients), which is usually not available. We introduce two new automated methods using the moments and maximum likelihood equations of the Gamma distribution to estimate noise distributions as they explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the framework automatic and robust to artifacts. Simulations using stationary and spatially varying noncentral chi noise distributions were created for two diffusion weightings with SENSE or GRAPPA reconstruction and 8, 12 or 32 receiver coils. Furthermore, MRI data of a water phantom with different combinations of parallel imaging were acquired on a 3T Philips scanner along with noise-only measurements. Finally, experiments on freely available datasets from a single subject acquired on a 3T GE scanner are used to assess reproducibility when limited information about the acquisition protocol is available. Additionally, we demonstrated the applicability of the proposed methods for a bias correction and denoising task on an in vivo dataset acquired on a 3T Siemens scanner. A generalized version of the bias correction framework for non integer degrees of freedom is also introduced. The proposed framework is compared with three other algorithms with datasets from three vendors, employing different reconstruction methods. Simulations showed that assuming a Rician distribution can lead to misestimation of the noise distribution in parallel imaging. Results on the acquired datasets showed that signal leakage in multiband can also lead to a misestimation of the noise distribution. Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variability than compared methods. Results for the bias correction and denoising task show that the proposed methods reduce the appearance of noise at high b-value. The proposed algorithms herein can estimate both parameters of the noise distribution automatically, are robust to signal leakage artifacts and perform best when used on acquired noise maps." @default.
- W2955932350 created "2019-07-12" @default.
- W2955932350 creator A5009119587 @default.
- W2955932350 creator A5030544325 @default.
- W2955932350 creator A5033933581 @default.
- W2955932350 creator A5034725246 @default.
- W2955932350 creator A5084896901 @default.
- W2955932350 date "2020-10-01" @default.
- W2955932350 modified "2023-10-11" @default.
- W2955932350 title "Automated characterization of noise distributions in diffusion MRI data" @default.
- W2955932350 cites W1490341421 @default.
- W2955932350 cites W1529887509 @default.
- W2955932350 cites W1576590016 @default.
- W2955932350 cites W1810655782 @default.
- W2955932350 cites W1965646345 @default.
- W2955932350 cites W1974508089 @default.
- W2955932350 cites W1991696126 @default.
- W2955932350 cites W1995218003 @default.
- W2955932350 cites W2012402158 @default.
- W2955932350 cites W2023173554 @default.
- W2955932350 cites W2032254014 @default.
- W2955932350 cites W2059189228 @default.
- W2955932350 cites W2059784307 @default.
- W2955932350 cites W2080616291 @default.
- W2955932350 cites W2101675075 @default.
- W2955932350 cites W2106263593 @default.
- W2955932350 cites W2110036579 @default.
- W2955932350 cites W2111388536 @default.
- W2955932350 cites W2111508341 @default.
- W2955932350 cites W2123223785 @default.
- W2955932350 cites W2123663192 @default.
- W2955932350 cites W2146541446 @default.
- W2955932350 cites W2146552179 @default.
- W2955932350 cites W2163473032 @default.
- W2955932350 cites W2167818248 @default.
- W2955932350 cites W2177917702 @default.
- W2955932350 cites W2265858291 @default.
- W2955932350 cites W2298552625 @default.
- W2955932350 cites W2560422278 @default.
- W2955932350 cites W2571611893 @default.
- W2955932350 cites W2587656219 @default.
- W2955932350 cites W2766639217 @default.
- W2955932350 cites W2809948855 @default.
- W2955932350 cites W2835008170 @default.
- W2955932350 cites W2892049953 @default.
- W2955932350 cites W2910002198 @default.
- W2955932350 cites W2912180110 @default.
- W2955932350 cites W2914537428 @default.
- W2955932350 cites W2977674931 @default.
- W2955932350 cites W3106348863 @default.
- W2955932350 cites W4249760698 @default.
- W2955932350 doi "https://doi.org/10.1016/j.media.2020.101758" @default.
- W2955932350 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32599491" @default.
- W2955932350 hasPublicationYear "2020" @default.
- W2955932350 type Work @default.
- W2955932350 sameAs 2955932350 @default.
- W2955932350 citedByCount "15" @default.
- W2955932350 countsByYear W29559323502020 @default.
- W2955932350 countsByYear W29559323502021 @default.
- W2955932350 countsByYear W29559323502022 @default.
- W2955932350 countsByYear W29559323502023 @default.
- W2955932350 crossrefType "journal-article" @default.
- W2955932350 hasAuthorship W2955932350A5009119587 @default.
- W2955932350 hasAuthorship W2955932350A5030544325 @default.
- W2955932350 hasAuthorship W2955932350A5033933581 @default.
- W2955932350 hasAuthorship W2955932350A5034725246 @default.
- W2955932350 hasAuthorship W2955932350A5084896901 @default.
- W2955932350 hasBestOaLocation W29559323501 @default.
- W2955932350 hasConcept C104293457 @default.
- W2955932350 hasConcept C11413529 @default.
- W2955932350 hasConcept C115961682 @default.
- W2955932350 hasConcept C120665830 @default.
- W2955932350 hasConcept C121332964 @default.
- W2955932350 hasConcept C153180895 @default.
- W2955932350 hasConcept C154945302 @default.
- W2955932350 hasConcept C163294075 @default.
- W2955932350 hasConcept C2779751349 @default.
- W2955932350 hasConcept C41008148 @default.
- W2955932350 hasConcept C99498987 @default.
- W2955932350 hasConceptScore W2955932350C104293457 @default.
- W2955932350 hasConceptScore W2955932350C11413529 @default.
- W2955932350 hasConceptScore W2955932350C115961682 @default.
- W2955932350 hasConceptScore W2955932350C120665830 @default.
- W2955932350 hasConceptScore W2955932350C121332964 @default.
- W2955932350 hasConceptScore W2955932350C153180895 @default.
- W2955932350 hasConceptScore W2955932350C154945302 @default.
- W2955932350 hasConceptScore W2955932350C163294075 @default.
- W2955932350 hasConceptScore W2955932350C2779751349 @default.
- W2955932350 hasConceptScore W2955932350C41008148 @default.
- W2955932350 hasConceptScore W2955932350C99498987 @default.
- W2955932350 hasLocation W29559323501 @default.
- W2955932350 hasLocation W29559323502 @default.
- W2955932350 hasLocation W29559323503 @default.
- W2955932350 hasLocation W29559323504 @default.
- W2955932350 hasLocation W29559323505 @default.
- W2955932350 hasOpenAccess W2955932350 @default.
- W2955932350 hasPrimaryLocation W29559323501 @default.
- W2955932350 hasRelatedWork W1517555227 @default.