Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955963963> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2955963963 endingPage "4012" @default.
- W2955963963 startingPage "3997" @default.
- W2955963963 abstract "The stochastic approximation EM algorithm (SAEM) is described for the estimation of item and person parameters given test data coded as dichotomous or ordinal variables. The method hinges upon the eigenanalysis of missing variables sampled as augmented data; the augmented data approach was introduced by Albert's seminal work applying Gibbs sampling to Item Response Theory in 1992. Similar to maximum likelihood factor analysis, the factor structure in this Bayesian approach depends only on sufficient statistics, which are computed from the missing latent data. A second feature of the SAEM algorithm is the use of the Robbins-Monro procedure for establishing convergence. Contrary to Expectation Maximization methods where costly integrals must be calculated, this method is well-suited for highly multidimensional data, and an annealing method is implemented to prevent convergence to a local maximum likelihood. Multiple calculations of errors applied within this framework of Markov Chain Monte Carlo are presented to delineate the uncertainty of parameter estimates. Given the nature of EFA (exploratory factor analysis), an algorithm is formalized leveraging the Tracy-Widom distribution for the retention of factors extracted from an eigenanalysis of the sufficient statistic of the covariance of the augmented data matrix. Simulation conditions of dichotomous and polytomous data, from one to ten dimensions of factor loadings, are used to assess statistical accuracy and to gauge computational time of the EFA approach of this IRT-specific implementation of the SAEM algorithm. Finally, three applications of this methodology are also reported that demonstrate the effectiveness of the method for enabling timely analyses as well as substantive interpretations when this method is applied to real data." @default.
- W2955963963 created "2019-07-12" @default.
- W2955963963 creator A5041907528 @default.
- W2955963963 creator A5081337666 @default.
- W2955963963 date "2019-07-02" @default.
- W2955963963 modified "2023-09-26" @default.
- W2955963963 title "Stochastic approximation EM for large‐scale exploratory IRT factor analysis" @default.
- W2955963963 cites W13740476 @default.
- W2955963963 cites W1596437242 @default.
- W2955963963 cites W1975968782 @default.
- W2955963963 cites W1977343372 @default.
- W2955963963 cites W1984112996 @default.
- W2955963963 cites W1984977150 @default.
- W2955963963 cites W1994616650 @default.
- W2955963963 cites W2002352330 @default.
- W2955963963 cites W2010182987 @default.
- W2955963963 cites W2017966270 @default.
- W2955963963 cites W2019706679 @default.
- W2955963963 cites W2023774552 @default.
- W2955963963 cites W2043073960 @default.
- W2955963963 cites W2060581589 @default.
- W2955963963 cites W2063168839 @default.
- W2955963963 cites W2063698062 @default.
- W2955963963 cites W2065156524 @default.
- W2955963963 cites W2066306397 @default.
- W2955963963 cites W2069913666 @default.
- W2955963963 cites W2076818396 @default.
- W2955963963 cites W2129828637 @default.
- W2955963963 cites W2138703513 @default.
- W2955963963 cites W2152977846 @default.
- W2955963963 cites W2154581502 @default.
- W2955963963 cites W2168003017 @default.
- W2955963963 cites W2175307020 @default.
- W2955963963 cites W2489543173 @default.
- W2955963963 cites W2621576843 @default.
- W2955963963 cites W2626678763 @default.
- W2955963963 cites W2790517972 @default.
- W2955963963 cites W4292080463 @default.
- W2955963963 doi "https://doi.org/10.1002/sim.8217" @default.
- W2955963963 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31267550" @default.
- W2955963963 hasPublicationYear "2019" @default.
- W2955963963 type Work @default.
- W2955963963 sameAs 2955963963 @default.
- W2955963963 citedByCount "4" @default.
- W2955963963 countsByYear W29559639632022 @default.
- W2955963963 crossrefType "journal-article" @default.
- W2955963963 hasAuthorship W2955963963A5041907528 @default.
- W2955963963 hasAuthorship W2955963963A5081337666 @default.
- W2955963963 hasBestOaLocation W29559639632 @default.
- W2955963963 hasConcept C105795698 @default.
- W2955963963 hasConcept C107673813 @default.
- W2955963963 hasConcept C111350023 @default.
- W2955963963 hasConcept C11413529 @default.
- W2955963963 hasConcept C126255220 @default.
- W2955963963 hasConcept C158424031 @default.
- W2955963963 hasConcept C182081679 @default.
- W2955963963 hasConcept C19499675 @default.
- W2955963963 hasConcept C33923547 @default.
- W2955963963 hasConcept C41008148 @default.
- W2955963963 hasConcept C49781872 @default.
- W2955963963 hasConcept C9357733 @default.
- W2955963963 hasConceptScore W2955963963C105795698 @default.
- W2955963963 hasConceptScore W2955963963C107673813 @default.
- W2955963963 hasConceptScore W2955963963C111350023 @default.
- W2955963963 hasConceptScore W2955963963C11413529 @default.
- W2955963963 hasConceptScore W2955963963C126255220 @default.
- W2955963963 hasConceptScore W2955963963C158424031 @default.
- W2955963963 hasConceptScore W2955963963C182081679 @default.
- W2955963963 hasConceptScore W2955963963C19499675 @default.
- W2955963963 hasConceptScore W2955963963C33923547 @default.
- W2955963963 hasConceptScore W2955963963C41008148 @default.
- W2955963963 hasConceptScore W2955963963C49781872 @default.
- W2955963963 hasConceptScore W2955963963C9357733 @default.
- W2955963963 hasIssue "21" @default.
- W2955963963 hasLocation W29559639631 @default.
- W2955963963 hasLocation W29559639632 @default.
- W2955963963 hasOpenAccess W2955963963 @default.
- W2955963963 hasPrimaryLocation W29559639631 @default.
- W2955963963 hasRelatedWork W1822348759 @default.
- W2955963963 hasRelatedWork W1969346551 @default.
- W2955963963 hasRelatedWork W2066716418 @default.
- W2955963963 hasRelatedWork W2075470739 @default.
- W2955963963 hasRelatedWork W2146501959 @default.
- W2955963963 hasRelatedWork W2255115219 @default.
- W2955963963 hasRelatedWork W2306879739 @default.
- W2955963963 hasRelatedWork W3094510431 @default.
- W2955963963 hasRelatedWork W3148306856 @default.
- W2955963963 hasRelatedWork W3199182262 @default.
- W2955963963 hasVolume "38" @default.
- W2955963963 isParatext "false" @default.
- W2955963963 isRetracted "false" @default.
- W2955963963 magId "2955963963" @default.
- W2955963963 workType "article" @default.