Matches in SemOpenAlex for { <https://semopenalex.org/work/W2955995429> ?p ?o ?g. }
- W2955995429 endingPage "735" @default.
- W2955995429 startingPage "728" @default.
- W2955995429 abstract "In this work, we report the comparison of regression methods in a long-period grating (LPG) for transverse strain measurement. We analyze the transverse strain sensing characteristics, such as load intensity and azimuthal angle, based on the birefringence effect induced in LPG sensor. Therefore, we employ the different orthogonal responses of the grating to develop regression methods, which allow the estimation of the strain behavior of the LPG sensor. The predictive performances of these interrogation models are compared in terms of square correlation coefficient (R2) and root mean square error (RMSE). Finally, the results indicate that the best method to predict load intensity is the Fourth-Degree Polynomial Fit, whereas the artificial neural network (ANN) model could be successfully employed to predict the azimuthal angle." @default.
- W2955995429 created "2019-07-12" @default.
- W2955995429 creator A5030002150 @default.
- W2955995429 creator A5032949372 @default.
- W2955995429 creator A5037876987 @default.
- W2955995429 creator A5046571342 @default.
- W2955995429 creator A5080284280 @default.
- W2955995429 date "2019-11-01" @default.
- W2955995429 modified "2023-09-24" @default.
- W2955995429 title "Comparison of regression methods for transverse load sensor based on optical fiber long-period grating" @default.
- W2955995429 cites W1983865151 @default.
- W2955995429 cites W1988790447 @default.
- W2955995429 cites W2018050812 @default.
- W2955995429 cites W2018449032 @default.
- W2955995429 cites W2024501817 @default.
- W2955995429 cites W2054337296 @default.
- W2955995429 cites W2070369774 @default.
- W2955995429 cites W2071655326 @default.
- W2955995429 cites W2083209794 @default.
- W2955995429 cites W2095795470 @default.
- W2955995429 cites W2121043290 @default.
- W2955995429 cites W2124324697 @default.
- W2955995429 cites W2129683971 @default.
- W2955995429 cites W2136610831 @default.
- W2955995429 cites W2295073829 @default.
- W2955995429 cites W2623475751 @default.
- W2955995429 cites W2673337788 @default.
- W2955995429 cites W2739479154 @default.
- W2955995429 cites W2744798544 @default.
- W2955995429 cites W2755756378 @default.
- W2955995429 cites W2791380045 @default.
- W2955995429 cites W2799295807 @default.
- W2955995429 cites W2810946079 @default.
- W2955995429 cites W2825552760 @default.
- W2955995429 cites W2883506266 @default.
- W2955995429 cites W2900020478 @default.
- W2955995429 doi "https://doi.org/10.1016/j.measurement.2019.07.017" @default.
- W2955995429 hasPublicationYear "2019" @default.
- W2955995429 type Work @default.
- W2955995429 sameAs 2955995429 @default.
- W2955995429 citedByCount "8" @default.
- W2955995429 countsByYear W29559954292020 @default.
- W2955995429 countsByYear W29559954292021 @default.
- W2955995429 countsByYear W29559954292022 @default.
- W2955995429 countsByYear W29559954292023 @default.
- W2955995429 crossrefType "journal-article" @default.
- W2955995429 hasAuthorship W2955995429A5030002150 @default.
- W2955995429 hasAuthorship W2955995429A5032949372 @default.
- W2955995429 hasAuthorship W2955995429A5037876987 @default.
- W2955995429 hasAuthorship W2955995429A5046571342 @default.
- W2955995429 hasAuthorship W2955995429A5080284280 @default.
- W2955995429 hasConcept C105795698 @default.
- W2955995429 hasConcept C120068334 @default.
- W2955995429 hasConcept C120665830 @default.
- W2955995429 hasConcept C121332964 @default.
- W2955995429 hasConcept C125743686 @default.
- W2955995429 hasConcept C127413603 @default.
- W2955995429 hasConcept C134306372 @default.
- W2955995429 hasConcept C139945424 @default.
- W2955995429 hasConcept C152877465 @default.
- W2955995429 hasConcept C154954056 @default.
- W2955995429 hasConcept C159737794 @default.
- W2955995429 hasConcept C192562407 @default.
- W2955995429 hasConcept C24890656 @default.
- W2955995429 hasConcept C2777813233 @default.
- W2955995429 hasConcept C2780092901 @default.
- W2955995429 hasConcept C33923547 @default.
- W2955995429 hasConcept C48921125 @default.
- W2955995429 hasConcept C66938386 @default.
- W2955995429 hasConcept C83546350 @default.
- W2955995429 hasConcept C90119067 @default.
- W2955995429 hasConcept C93038891 @default.
- W2955995429 hasConceptScore W2955995429C105795698 @default.
- W2955995429 hasConceptScore W2955995429C120068334 @default.
- W2955995429 hasConceptScore W2955995429C120665830 @default.
- W2955995429 hasConceptScore W2955995429C121332964 @default.
- W2955995429 hasConceptScore W2955995429C125743686 @default.
- W2955995429 hasConceptScore W2955995429C127413603 @default.
- W2955995429 hasConceptScore W2955995429C134306372 @default.
- W2955995429 hasConceptScore W2955995429C139945424 @default.
- W2955995429 hasConceptScore W2955995429C152877465 @default.
- W2955995429 hasConceptScore W2955995429C154954056 @default.
- W2955995429 hasConceptScore W2955995429C159737794 @default.
- W2955995429 hasConceptScore W2955995429C192562407 @default.
- W2955995429 hasConceptScore W2955995429C24890656 @default.
- W2955995429 hasConceptScore W2955995429C2777813233 @default.
- W2955995429 hasConceptScore W2955995429C2780092901 @default.
- W2955995429 hasConceptScore W2955995429C33923547 @default.
- W2955995429 hasConceptScore W2955995429C48921125 @default.
- W2955995429 hasConceptScore W2955995429C66938386 @default.
- W2955995429 hasConceptScore W2955995429C83546350 @default.
- W2955995429 hasConceptScore W2955995429C90119067 @default.
- W2955995429 hasConceptScore W2955995429C93038891 @default.
- W2955995429 hasFunder F4320321091 @default.
- W2955995429 hasFunder F4320322025 @default.
- W2955995429 hasFunder F4320324372 @default.
- W2955995429 hasFunder F4320324502 @default.
- W2955995429 hasLocation W29559954291 @default.