Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956044918> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2956044918 abstract "Many approaches to automatically recognizing entailment relations have employed classifiers over hand engineered lexicalized features, or deep learning models that implicitly capture lexicalization through word embeddings. This reliance on lexicalization may complicate the adaptation of these tools between domains. For example, such a system trained in the news domain may learn that a sentence like “Palestinians recognize Texas as part of Mexico” tends to be unsupported, but this fact (and its corresponding lexicalized cues) have no value in, say, a scientific domain. To mitigate this dependence on lexicalized information, in this paper we propose a model that reads two sentences, from any given domain, to determine entailment without using lexicalized features. Instead our model relies on features that are either unlexicalized or are domain independent such as proportion of negated verbs, antonyms, or noun overlap. In its current implementation, this model does not perform well on the FEVER dataset, due to two reasons. First, for the information retrieval portion of the task we used the baseline system provided, since this was not the aim of our project. Second, this is work in progress and we still are in the process of identifying more features and gradually increasing the accuracy of our model. In the end, we hope to build a generic end-to-end classifier, which can be used in a domain outside the one in which it was trained, with no or minimal re-training." @default.
- W2956044918 created "2019-07-12" @default.
- W2956044918 creator A5025108450 @default.
- W2956044918 creator A5047699502 @default.
- W2956044918 creator A5053335951 @default.
- W2956044918 date "2018-01-01" @default.
- W2956044918 modified "2023-10-16" @default.
- W2956044918 title "A mostly unlexicalized model for recognizing textual entailment" @default.
- W2956044918 cites W2008056655 @default.
- W2956044918 cites W2081580037 @default.
- W2956044918 cites W2123442489 @default.
- W2956044918 cites W2143017621 @default.
- W2956044918 cites W2250539671 @default.
- W2956044918 cites W2413794162 @default.
- W2956044918 cites W2962985038 @default.
- W2956044918 cites W2963416784 @default.
- W2956044918 cites W2963961878 @default.
- W2956044918 doi "https://doi.org/10.18653/v1/w18-5528" @default.
- W2956044918 hasPublicationYear "2018" @default.
- W2956044918 type Work @default.
- W2956044918 sameAs 2956044918 @default.
- W2956044918 citedByCount "1" @default.
- W2956044918 countsByYear W29560449182019 @default.
- W2956044918 crossrefType "proceedings-article" @default.
- W2956044918 hasAuthorship W2956044918A5025108450 @default.
- W2956044918 hasAuthorship W2956044918A5047699502 @default.
- W2956044918 hasAuthorship W2956044918A5053335951 @default.
- W2956044918 hasBestOaLocation W29560449181 @default.
- W2956044918 hasConcept C121934690 @default.
- W2956044918 hasConcept C134306372 @default.
- W2956044918 hasConcept C134752490 @default.
- W2956044918 hasConcept C153083717 @default.
- W2956044918 hasConcept C154945302 @default.
- W2956044918 hasConcept C204321447 @default.
- W2956044918 hasConcept C2776434776 @default.
- W2956044918 hasConcept C2777530160 @default.
- W2956044918 hasConcept C2777532361 @default.
- W2956044918 hasConcept C33923547 @default.
- W2956044918 hasConcept C36503486 @default.
- W2956044918 hasConcept C41008148 @default.
- W2956044918 hasConcept C95318506 @default.
- W2956044918 hasConcept C95623464 @default.
- W2956044918 hasConceptScore W2956044918C121934690 @default.
- W2956044918 hasConceptScore W2956044918C134306372 @default.
- W2956044918 hasConceptScore W2956044918C134752490 @default.
- W2956044918 hasConceptScore W2956044918C153083717 @default.
- W2956044918 hasConceptScore W2956044918C154945302 @default.
- W2956044918 hasConceptScore W2956044918C204321447 @default.
- W2956044918 hasConceptScore W2956044918C2776434776 @default.
- W2956044918 hasConceptScore W2956044918C2777530160 @default.
- W2956044918 hasConceptScore W2956044918C2777532361 @default.
- W2956044918 hasConceptScore W2956044918C33923547 @default.
- W2956044918 hasConceptScore W2956044918C36503486 @default.
- W2956044918 hasConceptScore W2956044918C41008148 @default.
- W2956044918 hasConceptScore W2956044918C95318506 @default.
- W2956044918 hasConceptScore W2956044918C95623464 @default.
- W2956044918 hasLocation W29560449181 @default.
- W2956044918 hasOpenAccess W2956044918 @default.
- W2956044918 hasPrimaryLocation W29560449181 @default.
- W2956044918 hasRelatedWork W1506522508 @default.
- W2956044918 hasRelatedWork W1516535577 @default.
- W2956044918 hasRelatedWork W1591825359 @default.
- W2956044918 hasRelatedWork W1909984404 @default.
- W2956044918 hasRelatedWork W2091047936 @default.
- W2956044918 hasRelatedWork W2250214321 @default.
- W2956044918 hasRelatedWork W2250652819 @default.
- W2956044918 hasRelatedWork W2402782609 @default.
- W2956044918 hasRelatedWork W2434652080 @default.
- W2956044918 hasRelatedWork W2435559386 @default.
- W2956044918 hasRelatedWork W2617070002 @default.
- W2956044918 hasRelatedWork W2736580908 @default.
- W2956044918 hasRelatedWork W2785665581 @default.
- W2956044918 hasRelatedWork W2970834904 @default.
- W2956044918 hasRelatedWork W2972981634 @default.
- W2956044918 hasRelatedWork W2989867050 @default.
- W2956044918 hasRelatedWork W3014390292 @default.
- W2956044918 hasRelatedWork W3092958231 @default.
- W2956044918 hasRelatedWork W3100756144 @default.
- W2956044918 hasRelatedWork W3176319599 @default.
- W2956044918 isParatext "false" @default.
- W2956044918 isRetracted "false" @default.
- W2956044918 magId "2956044918" @default.
- W2956044918 workType "article" @default.