Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956047028> ?p ?o ?g. }
- W2956047028 endingPage "1914" @default.
- W2956047028 startingPage "1905" @default.
- W2956047028 abstract "Climate change due to anthropogenic carbon dioxide emissions (e.g., combustion of fossil fuels) represents one of the most profound environmental disasters of this century. Equipping power plants with carbon capture and storage (CCS) technology has the potential to reduce current worldwide CO2 emissions. However, existing CCS schemes (i.e., amine scrubbing) are highly energy-intensive. The urgent abatement of CO2 emissions relies on the development of new, efficient technologies to capture CO2 from existing power plants. Membrane-based CO2 separation is an attractive technology that meets many of the requirements for energy-efficient industrial carbon capture. Within this domain, thin-film composite (TFC) membranes are particularly attractive, providing high gas permeance in comparison with conventional thicker (∼50 μm) dense membranes. TFC membranes are usually composed of three layers: (1) a bottom porous support layer; (2) a highly permeable intermediate gutter layer; and (3) a thin (<1 μm) species-selective top layer. A key challenge in the development of TFC membranes has been to simultaneously maximize the transmembrane gas permeance of the assembled membrane (by minimizing the gas resistance of each layer) while maintaining high gas-specific selectivity. In this Account, we provide an overview of our recent development of high-performance TFC membrane materials as well as insights into the unique fabrication strategies employed for the selective layer and gutter layer. Optimization of each layer of the membrane assembly individually results in significant improvements in overall membrane performance. First, incorporating nanosized fillers into the selective layer (poly(ethylene glycol)-based polymers) and reducing its thickness (to ca. 50 nm) through continuous assembly of polymers technology yields major improvements in CO2 permeance without loss of selectivity. Second, we focus on optimization of the middle gutter layer of TFC membranes. The development of enhanced gutter layers employing two- and three-dimensional metal-organic framework materials leads to considerable improvements in both CO2 permeance and selectivity compared with traditional poly(dimethylsiloxane) materials. Third, incorporation of a porous, flexible support layer culminates in a mechanically robust high-performance TFC membrane design that exhibits unprecedented CO2 separation performance and holds significant potential for industrial CO2 capture. Alternative strategies are also emerging, whereby the selective layer and gutter layer may be combined for enhanced membrane efficiency. This Account highlights the CO2 capture performance, current challenges, and future research directions in designing high-performance TFC membranes." @default.
- W2956047028 created "2019-07-12" @default.
- W2956047028 creator A5001186572 @default.
- W2956047028 creator A5009966472 @default.
- W2956047028 creator A5022629505 @default.
- W2956047028 creator A5045399522 @default.
- W2956047028 creator A5088254630 @default.
- W2956047028 date "2019-06-27" @default.
- W2956047028 modified "2023-10-12" @default.
- W2956047028 title "Postcombustion Carbon Capture Using Thin-Film Composite Membranes" @default.
- W2956047028 cites W1042730058 @default.
- W2956047028 cites W1945236753 @default.
- W2956047028 cites W1967436660 @default.
- W2956047028 cites W1969059188 @default.
- W2956047028 cites W1984273433 @default.
- W2956047028 cites W1987966973 @default.
- W2956047028 cites W1992150357 @default.
- W2956047028 cites W1993583094 @default.
- W2956047028 cites W2003650644 @default.
- W2956047028 cites W2009422603 @default.
- W2956047028 cites W2013156001 @default.
- W2956047028 cites W2013397109 @default.
- W2956047028 cites W2021344666 @default.
- W2956047028 cites W2028141170 @default.
- W2956047028 cites W2046576913 @default.
- W2956047028 cites W2049700389 @default.
- W2956047028 cites W2065582066 @default.
- W2956047028 cites W2074617437 @default.
- W2956047028 cites W2076949647 @default.
- W2956047028 cites W2078748481 @default.
- W2956047028 cites W2082751246 @default.
- W2956047028 cites W2086545059 @default.
- W2956047028 cites W2125053394 @default.
- W2956047028 cites W2125368238 @default.
- W2956047028 cites W2136057251 @default.
- W2956047028 cites W2157695322 @default.
- W2956047028 cites W2160382906 @default.
- W2956047028 cites W2299909344 @default.
- W2956047028 cites W2407944632 @default.
- W2956047028 cites W2419278276 @default.
- W2956047028 cites W2461799814 @default.
- W2956047028 cites W2512951951 @default.
- W2956047028 cites W2580300294 @default.
- W2956047028 cites W2605597016 @default.
- W2956047028 cites W2625153997 @default.
- W2956047028 cites W2764184599 @default.
- W2956047028 cites W2765568753 @default.
- W2956047028 cites W2765571001 @default.
- W2956047028 cites W2891028628 @default.
- W2956047028 cites W2895389162 @default.
- W2956047028 cites W2898126961 @default.
- W2956047028 cites W2898313190 @default.
- W2956047028 cites W2901828113 @default.
- W2956047028 cites W2908165281 @default.
- W2956047028 cites W2922113888 @default.
- W2956047028 cites W2924520018 @default.
- W2956047028 cites W4250940175 @default.
- W2956047028 cites W763597904 @default.
- W2956047028 cites W4211262641 @default.
- W2956047028 doi "https://doi.org/10.1021/acs.accounts.9b00111" @default.
- W2956047028 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31246007" @default.
- W2956047028 hasPublicationYear "2019" @default.
- W2956047028 type Work @default.
- W2956047028 sameAs 2956047028 @default.
- W2956047028 citedByCount "49" @default.
- W2956047028 countsByYear W29560470282019 @default.
- W2956047028 countsByYear W29560470282020 @default.
- W2956047028 countsByYear W29560470282021 @default.
- W2956047028 countsByYear W29560470282022 @default.
- W2956047028 countsByYear W29560470282023 @default.
- W2956047028 crossrefType "journal-article" @default.
- W2956047028 hasAuthorship W2956047028A5001186572 @default.
- W2956047028 hasAuthorship W2956047028A5009966472 @default.
- W2956047028 hasAuthorship W2956047028A5022629505 @default.
- W2956047028 hasAuthorship W2956047028A5045399522 @default.
- W2956047028 hasAuthorship W2956047028A5088254630 @default.
- W2956047028 hasConcept C104779481 @default.
- W2956047028 hasConcept C127413603 @default.
- W2956047028 hasConcept C130797344 @default.
- W2956047028 hasConcept C140205800 @default.
- W2956047028 hasConcept C159985019 @default.
- W2956047028 hasConcept C171250308 @default.
- W2956047028 hasConcept C18411161 @default.
- W2956047028 hasConcept C185592680 @default.
- W2956047028 hasConcept C192562407 @default.
- W2956047028 hasConcept C21535326 @default.
- W2956047028 hasConcept C21880701 @default.
- W2956047028 hasConcept C2779227376 @default.
- W2956047028 hasConcept C39432304 @default.
- W2956047028 hasConcept C41625074 @default.
- W2956047028 hasConcept C42360764 @default.
- W2956047028 hasConcept C50670333 @default.
- W2956047028 hasConcept C521977710 @default.
- W2956047028 hasConcept C55493867 @default.
- W2956047028 hasConcept C85268084 @default.
- W2956047028 hasConceptScore W2956047028C104779481 @default.
- W2956047028 hasConceptScore W2956047028C127413603 @default.
- W2956047028 hasConceptScore W2956047028C130797344 @default.