Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956109214> ?p ?o ?g. }
- W2956109214 endingPage "271" @default.
- W2956109214 startingPage "259" @default.
- W2956109214 abstract "The early Cambrian was a critical interval in geological history and featured profound oceanic and biotic changes. To unravel the oceanic redox conditions, high-resolution analyses of iron speciation and redox-sensitive trace elements (Mo and U) within the framework of sequence stratigraphy were carried out on the Niutitang Formation (~528–521 Ma). The two examined sections, the Daotuo and Bahuang sections, were respectively located in a mid-upper slope setting and a lower slope to basin settings behind a seaward submerged sill on the middle Yangtze Block, South China. At Daotuo, the Fepy/FeHR values display moderate positive covariances with the total organic carbon contents (TOC) and the Mo/TOC ratios, notably in the basal part of the Niutitang Formation. Therefore, at this locality the euxinic water mass wedge was developed in association with a high primary organic productivity/burial rate, likely within a high-productivity zone. In contrast, at Bahuang, the Fepy/FeHR values show weak to negative covariances with the Mo/TOC ratios and TOC contents in the basal part, indicating that the biogeochemical cycles of Fe, Mo with C were decoupled in a lower-productivity, ferruginous deeper basinal setting. These spatial changes in marine redox structures and biogeochemical cycles can be reasonably explained by the existence of oceanic upwelling in the presence of strong offshore currents and a seaward submarine sill, reconciling the oxygen minimum zone (OMZ) in modern oceanic margins to some extent. This spatial redox pattern also accounts well for previous data based on which the euxinic state intermittently invaded upward onto the shelf margin and evolved into a ferruginous-dominant anoxia in the inner shelf subbasins. In addition, the euxinic wedge dynamically fluctuated upslope and downslope along the transect from the ferruginous outer shelf slope to the basin in response to rise and fall of sea-level. Consequently, the temporal evolution of the redox conditions was driven in part by eustatic variations. Moreover, the paleogeographic position of the Yangtze Block in the mid-lower latitudes suggests that the block was associated with relatively strong offshore currents induced by trade winds, which notably enhanced the oceanic upwelling near the transgression maximum. On the other hand, the dominance of deep ferruginous waters with the local occurrence of a euxinic wedge on the outer shelf slope indicates relatively low concentrations of seawater sulfate and atmospheric oxygen during the deposition of the Niutitang black shales. This redox model thus highlights the important roles of paleogeographic, paleoclimatic and eustatic sea-level changes in controlling the spatiotemporal fluctuations in marine redox conditions and biogeochemical cycling in the early Cambrian ocean." @default.
- W2956109214 created "2019-07-12" @default.
- W2956109214 creator A5016850323 @default.
- W2956109214 creator A5074003767 @default.
- W2956109214 creator A5076606414 @default.
- W2956109214 creator A5080115706 @default.
- W2956109214 creator A5091193113 @default.
- W2956109214 date "2019-10-01" @default.
- W2956109214 modified "2023-10-10" @default.
- W2956109214 title "Development and evolution of a euxinic wedge on the ferruginous outer shelf of the early Cambrian Yangtze sea" @default.
- W2956109214 cites W1462437934 @default.
- W2956109214 cites W1560828235 @default.
- W2956109214 cites W1627292383 @default.
- W2956109214 cites W1648236804 @default.
- W2956109214 cites W1697241407 @default.
- W2956109214 cites W1980270634 @default.
- W2956109214 cites W1990523556 @default.
- W2956109214 cites W1990648220 @default.
- W2956109214 cites W1991664160 @default.
- W2956109214 cites W1993333048 @default.
- W2956109214 cites W1994160943 @default.
- W2956109214 cites W2005604628 @default.
- W2956109214 cites W2005726506 @default.
- W2956109214 cites W2007488516 @default.
- W2956109214 cites W2019663851 @default.
- W2956109214 cites W2022068844 @default.
- W2956109214 cites W2022078237 @default.
- W2956109214 cites W2040950908 @default.
- W2956109214 cites W2057391595 @default.
- W2956109214 cites W2062698646 @default.
- W2956109214 cites W2064173032 @default.
- W2956109214 cites W2066086830 @default.
- W2956109214 cites W2067570736 @default.
- W2956109214 cites W2070336776 @default.
- W2956109214 cites W2074831421 @default.
- W2956109214 cites W2075619059 @default.
- W2956109214 cites W2098778302 @default.
- W2956109214 cites W2099390035 @default.
- W2956109214 cites W2106809104 @default.
- W2956109214 cites W2111414198 @default.
- W2956109214 cites W2112284321 @default.
- W2956109214 cites W2118715042 @default.
- W2956109214 cites W2123379910 @default.
- W2956109214 cites W2135959037 @default.
- W2956109214 cites W2136964181 @default.
- W2956109214 cites W2143178560 @default.
- W2956109214 cites W2148585617 @default.
- W2956109214 cites W2148911019 @default.
- W2956109214 cites W2158088555 @default.
- W2956109214 cites W2161582133 @default.
- W2956109214 cites W2170312901 @default.
- W2956109214 cites W2185711520 @default.
- W2956109214 cites W2200636687 @default.
- W2956109214 cites W2239784347 @default.
- W2956109214 cites W2294270396 @default.
- W2956109214 cites W2313539223 @default.
- W2956109214 cites W2330764013 @default.
- W2956109214 cites W2330891498 @default.
- W2956109214 cites W2334477362 @default.
- W2956109214 cites W2337241238 @default.
- W2956109214 cites W2471971911 @default.
- W2956109214 cites W2513903458 @default.
- W2956109214 cites W2564025545 @default.
- W2956109214 cites W2589967143 @default.
- W2956109214 cites W2735833906 @default.
- W2956109214 cites W2767882148 @default.
- W2956109214 cites W2775556842 @default.
- W2956109214 cites W2885798773 @default.
- W2956109214 doi "https://doi.org/10.1016/j.chemgeo.2019.06.024" @default.
- W2956109214 hasPublicationYear "2019" @default.
- W2956109214 type Work @default.
- W2956109214 sameAs 2956109214 @default.
- W2956109214 citedByCount "22" @default.
- W2956109214 countsByYear W29561092142020 @default.
- W2956109214 countsByYear W29561092142021 @default.
- W2956109214 countsByYear W29561092142022 @default.
- W2956109214 countsByYear W29561092142023 @default.
- W2956109214 crossrefType "journal-article" @default.
- W2956109214 hasAuthorship W2956109214A5016850323 @default.
- W2956109214 hasAuthorship W2956109214A5074003767 @default.
- W2956109214 hasAuthorship W2956109214A5076606414 @default.
- W2956109214 hasAuthorship W2956109214A5080115706 @default.
- W2956109214 hasAuthorship W2956109214A5091193113 @default.
- W2956109214 hasConcept C107872376 @default.
- W2956109214 hasConcept C111368507 @default.
- W2956109214 hasConcept C127313418 @default.
- W2956109214 hasConcept C149348798 @default.
- W2956109214 hasConcept C151730666 @default.
- W2956109214 hasConcept C158787203 @default.
- W2956109214 hasConcept C17409809 @default.
- W2956109214 hasConcept C185592680 @default.
- W2956109214 hasConcept C18903297 @default.
- W2956109214 hasConcept C40201923 @default.
- W2956109214 hasConcept C71915725 @default.
- W2956109214 hasConcept C86803240 @default.
- W2956109214 hasConceptScore W2956109214C107872376 @default.
- W2956109214 hasConceptScore W2956109214C111368507 @default.
- W2956109214 hasConceptScore W2956109214C127313418 @default.