Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956137306> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2956137306 startingPage "21" @default.
- W2956137306 abstract "The epsilon-approximate degree deg~_epsilon(f) of a Boolean function f is the least degree of a real-valued polynomial that approximates f pointwise to within epsilon. A sound and complete certificate for approximate degree being at least k is a pair of probability distributions, also known as a dual polynomial, that are perfectly k-wise indistinguishable, but are distinguishable by f with advantage 1 - epsilon. Our contributions are:- We give a simple, explicit new construction of a dual polynomial for the AND function on n bits, certifying that its epsilon-approximate degree is Omega (sqrt{n log 1/epsilon}). This construction is the first to extend to the notion of weighted degree, and yields the first explicit certificate that the 1/3-approximate degree of any (possibly unbalanced) read-once DNF is Omega(sqrt{n}). It draws a novel connection between the approximate degree of AND and anti-concentration of the Binomial distribution.- We show that any pair of symmetric distributions on n-bit strings that are perfectly k-wise indistinguishable are also statistically K-wise indistinguishable with at most K^{3/2} * exp (-Omega (k^2/K)) error for all k < K <= n/64. This bound is essentially tight, and implies that any symmetric function f is a reconstruction function with constant advantage for a ramp secret sharing scheme that is secure against size-K coalitions with statistical error K^{3/2} * exp (-Omega (deg~_{1/3}(f)^2/K)) for all values of K up to n/64 simultaneously. Previous secret sharing schemes required that K be determined in advance, and only worked for f=AND. Our analysis draws another new connection between approximate degree and concentration phenomena. As a corollary of this result, we show that for any d deg~_{1/3}(f). These upper and lower bounds were also previously only known in the case f=AND." @default.
- W2956137306 created "2019-07-12" @default.
- W2956137306 creator A5023355554 @default.
- W2956137306 creator A5027137684 @default.
- W2956137306 creator A5080601320 @default.
- W2956137306 creator A5091529166 @default.
- W2956137306 date "2019-06-01" @default.
- W2956137306 modified "2023-09-27" @default.
- W2956137306 title "Approximate Degree, Secret Sharing, and Concentration Phenomena" @default.
- W2956137306 doi "https://doi.org/10.4230/lipics.approx-random.2019.71" @default.
- W2956137306 hasPublicationYear "2019" @default.
- W2956137306 type Work @default.
- W2956137306 sameAs 2956137306 @default.
- W2956137306 citedByCount "4" @default.
- W2956137306 countsByYear W29561373062019 @default.
- W2956137306 countsByYear W29561373062021 @default.
- W2956137306 crossrefType "proceedings-article" @default.
- W2956137306 hasAuthorship W2956137306A5023355554 @default.
- W2956137306 hasAuthorship W2956137306A5027137684 @default.
- W2956137306 hasAuthorship W2956137306A5080601320 @default.
- W2956137306 hasAuthorship W2956137306A5091529166 @default.
- W2956137306 hasConcept C114614502 @default.
- W2956137306 hasConcept C118615104 @default.
- W2956137306 hasConcept C121332964 @default.
- W2956137306 hasConcept C134306372 @default.
- W2956137306 hasConcept C14036430 @default.
- W2956137306 hasConcept C187455244 @default.
- W2956137306 hasConcept C24890656 @default.
- W2956137306 hasConcept C2775997480 @default.
- W2956137306 hasConcept C2779557605 @default.
- W2956137306 hasConcept C33923547 @default.
- W2956137306 hasConcept C62520636 @default.
- W2956137306 hasConcept C77553402 @default.
- W2956137306 hasConcept C78458016 @default.
- W2956137306 hasConcept C86803240 @default.
- W2956137306 hasConcept C90119067 @default.
- W2956137306 hasConceptScore W2956137306C114614502 @default.
- W2956137306 hasConceptScore W2956137306C118615104 @default.
- W2956137306 hasConceptScore W2956137306C121332964 @default.
- W2956137306 hasConceptScore W2956137306C134306372 @default.
- W2956137306 hasConceptScore W2956137306C14036430 @default.
- W2956137306 hasConceptScore W2956137306C187455244 @default.
- W2956137306 hasConceptScore W2956137306C24890656 @default.
- W2956137306 hasConceptScore W2956137306C2775997480 @default.
- W2956137306 hasConceptScore W2956137306C2779557605 @default.
- W2956137306 hasConceptScore W2956137306C33923547 @default.
- W2956137306 hasConceptScore W2956137306C62520636 @default.
- W2956137306 hasConceptScore W2956137306C77553402 @default.
- W2956137306 hasConceptScore W2956137306C78458016 @default.
- W2956137306 hasConceptScore W2956137306C86803240 @default.
- W2956137306 hasConceptScore W2956137306C90119067 @default.
- W2956137306 hasLocation W29561373061 @default.
- W2956137306 hasOpenAccess W2956137306 @default.
- W2956137306 hasPrimaryLocation W29561373061 @default.
- W2956137306 hasRelatedWork W1205694693 @default.
- W2956137306 hasRelatedWork W1598884337 @default.
- W2956137306 hasRelatedWork W1795584562 @default.
- W2956137306 hasRelatedWork W2549898738 @default.
- W2956137306 hasRelatedWork W2574502552 @default.
- W2956137306 hasRelatedWork W2906838315 @default.
- W2956137306 hasRelatedWork W2945324225 @default.
- W2956137306 hasRelatedWork W2950489634 @default.
- W2956137306 hasRelatedWork W2950929157 @default.
- W2956137306 hasRelatedWork W2951642689 @default.
- W2956137306 hasRelatedWork W2951718110 @default.
- W2956137306 hasRelatedWork W2952038943 @default.
- W2956137306 hasRelatedWork W2952368743 @default.
- W2956137306 hasRelatedWork W2963835463 @default.
- W2956137306 hasRelatedWork W2972131259 @default.
- W2956137306 hasRelatedWork W3013848491 @default.
- W2956137306 hasRelatedWork W3035118655 @default.
- W2956137306 hasRelatedWork W3037199564 @default.
- W2956137306 hasRelatedWork W3135050128 @default.
- W2956137306 hasRelatedWork W3170725852 @default.
- W2956137306 hasVolume "145" @default.
- W2956137306 isParatext "false" @default.
- W2956137306 isRetracted "false" @default.
- W2956137306 magId "2956137306" @default.
- W2956137306 workType "article" @default.