Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956173172> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2956173172 abstract "With the rise of deep learning within medical applications, questions about classification confidence become of major interest as misclassifications might have serious impact on human health. While multiple ways of confidence estimation have been proposed, most of them suffer from computational inefficiency or low statistical accuracy. We utilize a modified version of the method introduced by DeVries et al. for one-shot confidence estimation and show its application for colorectal cancer liver metastases growth prediction. Furthermore, we propose a psychologically motivated generalized training framework called “deep metamemory” comparable to the idea of curriculum learning, which utilizes confidence estimation for efficient training augmentation with improved classification performance on unseen data." @default.
- W2956173172 created "2019-07-23" @default.
- W2956173172 creator A5007022384 @default.
- W2956173172 creator A5011400986 @default.
- W2956173172 creator A5029055548 @default.
- W2956173172 creator A5045575465 @default.
- W2956173172 creator A5064451296 @default.
- W2956173172 date "2019-04-01" @default.
- W2956173172 modified "2023-09-30" @default.
- W2956173172 title "Deep Metamemory - A Generic Framework for Stabilized One-Shot Confidence Estimation in Deep Neural Networks and its Application on Colorectal Cancer Liver Metastases Growth Prediction" @default.
- W2956173172 cites W1598182466 @default.
- W2956173172 cites W2079337055 @default.
- W2956173172 cites W2119112357 @default.
- W2956173172 cites W2124181495 @default.
- W2956173172 cites W2296073425 @default.
- W2956173172 cites W2346062110 @default.
- W2956173172 cites W2531327146 @default.
- W2956173172 cites W2592929672 @default.
- W2956173172 cites W2600383743 @default.
- W2956173172 cites W2786712888 @default.
- W2956173172 cites W2904098865 @default.
- W2956173172 cites W2963238274 @default.
- W2956173172 cites W2964037936 @default.
- W2956173172 cites W2964059111 @default.
- W2956173172 cites W2964121744 @default.
- W2956173172 cites W3118608800 @default.
- W2956173172 doi "https://doi.org/10.1109/isbi.2019.8759505" @default.
- W2956173172 hasPublicationYear "2019" @default.
- W2956173172 type Work @default.
- W2956173172 sameAs 2956173172 @default.
- W2956173172 citedByCount "0" @default.
- W2956173172 crossrefType "proceedings-article" @default.
- W2956173172 hasAuthorship W2956173172A5007022384 @default.
- W2956173172 hasAuthorship W2956173172A5011400986 @default.
- W2956173172 hasAuthorship W2956173172A5029055548 @default.
- W2956173172 hasAuthorship W2956173172A5045575465 @default.
- W2956173172 hasAuthorship W2956173172A5064451296 @default.
- W2956173172 hasConcept C108583219 @default.
- W2956173172 hasConcept C118147538 @default.
- W2956173172 hasConcept C118552586 @default.
- W2956173172 hasConcept C119857082 @default.
- W2956173172 hasConcept C127413603 @default.
- W2956173172 hasConcept C153180895 @default.
- W2956173172 hasConcept C154945302 @default.
- W2956173172 hasConcept C162324750 @default.
- W2956173172 hasConcept C169900460 @default.
- W2956173172 hasConcept C17131424 @default.
- W2956173172 hasConcept C175444787 @default.
- W2956173172 hasConcept C201995342 @default.
- W2956173172 hasConcept C2778869765 @default.
- W2956173172 hasConcept C41008148 @default.
- W2956173172 hasConcept C50644808 @default.
- W2956173172 hasConcept C71924100 @default.
- W2956173172 hasConcept C96250715 @default.
- W2956173172 hasConceptScore W2956173172C108583219 @default.
- W2956173172 hasConceptScore W2956173172C118147538 @default.
- W2956173172 hasConceptScore W2956173172C118552586 @default.
- W2956173172 hasConceptScore W2956173172C119857082 @default.
- W2956173172 hasConceptScore W2956173172C127413603 @default.
- W2956173172 hasConceptScore W2956173172C153180895 @default.
- W2956173172 hasConceptScore W2956173172C154945302 @default.
- W2956173172 hasConceptScore W2956173172C162324750 @default.
- W2956173172 hasConceptScore W2956173172C169900460 @default.
- W2956173172 hasConceptScore W2956173172C17131424 @default.
- W2956173172 hasConceptScore W2956173172C175444787 @default.
- W2956173172 hasConceptScore W2956173172C201995342 @default.
- W2956173172 hasConceptScore W2956173172C2778869765 @default.
- W2956173172 hasConceptScore W2956173172C41008148 @default.
- W2956173172 hasConceptScore W2956173172C50644808 @default.
- W2956173172 hasConceptScore W2956173172C71924100 @default.
- W2956173172 hasConceptScore W2956173172C96250715 @default.
- W2956173172 hasLocation W29561731721 @default.
- W2956173172 hasOpenAccess W2956173172 @default.
- W2956173172 hasPrimaryLocation W29561731721 @default.
- W2956173172 hasRelatedWork W2062630716 @default.
- W2956173172 hasRelatedWork W2901573617 @default.
- W2956173172 hasRelatedWork W2921148628 @default.
- W2956173172 hasRelatedWork W3001855876 @default.
- W2956173172 hasRelatedWork W3010838038 @default.
- W2956173172 hasRelatedWork W3025999307 @default.
- W2956173172 hasRelatedWork W3028499805 @default.
- W2956173172 hasRelatedWork W3043658497 @default.
- W2956173172 hasRelatedWork W3080637587 @default.
- W2956173172 hasRelatedWork W3082021746 @default.
- W2956173172 hasRelatedWork W3088964481 @default.
- W2956173172 hasRelatedWork W3091819931 @default.
- W2956173172 hasRelatedWork W3116718021 @default.
- W2956173172 hasRelatedWork W3122647909 @default.
- W2956173172 hasRelatedWork W3138967769 @default.
- W2956173172 hasRelatedWork W3147644385 @default.
- W2956173172 hasRelatedWork W3156034407 @default.
- W2956173172 hasRelatedWork W3177010161 @default.
- W2956173172 hasRelatedWork W3181021892 @default.
- W2956173172 hasRelatedWork W3200191661 @default.
- W2956173172 isParatext "false" @default.
- W2956173172 isRetracted "false" @default.
- W2956173172 magId "2956173172" @default.
- W2956173172 workType "article" @default.