Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956220464> ?p ?o ?g. }
- W2956220464 endingPage "876" @default.
- W2956220464 startingPage "865" @default.
- W2956220464 abstract "Abstract Accurately forecasting multivariate volatility plays a crucial role for the financial industry. The Cholesky–artificial neural networks specification here presented provides a twofold advantage for this topic. On the one hand, the use of the Cholesky decomposition ensures positive definite forecasts. On the other hand, the implementation of artificial neural networks allows us to specify nonlinear relations without any particular distributional assumption. Out‐of‐sample comparisons reveal that artificial neural networks are not able to strongly outperform the competing models. However, long‐memory detecting networks, like nonlinear autoregressive model process with exogenous input and long short‐term memory, show improved forecast accuracy with respect to existing econometric models." @default.
- W2956220464 created "2019-07-23" @default.
- W2956220464 creator A5081057230 @default.
- W2956220464 date "2020-02-17" @default.
- W2956220464 modified "2023-10-17" @default.
- W2956220464 title "Cholesky–ANN models for predicting multivariate realized volatility" @default.
- W2956220464 cites W1775634960 @default.
- W2956220464 cites W1918248777 @default.
- W2956220464 cites W1963787328 @default.
- W2956220464 cites W1966106237 @default.
- W2956220464 cites W1995834279 @default.
- W2956220464 cites W1995897351 @default.
- W2956220464 cites W2035942174 @default.
- W2956220464 cites W2040503026 @default.
- W2956220464 cites W2041402087 @default.
- W2956220464 cites W2050099778 @default.
- W2956220464 cites W2051235503 @default.
- W2956220464 cites W2064651043 @default.
- W2956220464 cites W2064675550 @default.
- W2956220464 cites W2082961314 @default.
- W2956220464 cites W2084264176 @default.
- W2956220464 cites W2094871612 @default.
- W2956220464 cites W2110485445 @default.
- W2956220464 cites W2110758267 @default.
- W2956220464 cites W2120224355 @default.
- W2956220464 cites W2124295159 @default.
- W2956220464 cites W2144570112 @default.
- W2956220464 cites W2154626199 @default.
- W2956220464 cites W2167162925 @default.
- W2956220464 cites W2169228003 @default.
- W2956220464 cites W2239738145 @default.
- W2956220464 cites W2274652644 @default.
- W2956220464 cites W2592559322 @default.
- W2956220464 cites W2734777338 @default.
- W2956220464 cites W2746950032 @default.
- W2956220464 cites W2789364533 @default.
- W2956220464 cites W3022041122 @default.
- W2956220464 cites W3121364726 @default.
- W2956220464 cites W3122463731 @default.
- W2956220464 cites W3124009593 @default.
- W2956220464 cites W3124791446 @default.
- W2956220464 cites W3125412410 @default.
- W2956220464 doi "https://doi.org/10.1002/for.2664" @default.
- W2956220464 hasPublicationYear "2020" @default.
- W2956220464 type Work @default.
- W2956220464 sameAs 2956220464 @default.
- W2956220464 citedByCount "16" @default.
- W2956220464 countsByYear W29562204642020 @default.
- W2956220464 countsByYear W29562204642021 @default.
- W2956220464 countsByYear W29562204642022 @default.
- W2956220464 countsByYear W29562204642023 @default.
- W2956220464 crossrefType "journal-article" @default.
- W2956220464 hasAuthorship W2956220464A5081057230 @default.
- W2956220464 hasBestOaLocation W29562204642 @default.
- W2956220464 hasConcept C119857082 @default.
- W2956220464 hasConcept C121332964 @default.
- W2956220464 hasConcept C149782125 @default.
- W2956220464 hasConcept C154945302 @default.
- W2956220464 hasConcept C158693339 @default.
- W2956220464 hasConcept C159877910 @default.
- W2956220464 hasConcept C161584116 @default.
- W2956220464 hasConcept C162324750 @default.
- W2956220464 hasConcept C34727166 @default.
- W2956220464 hasConcept C41008148 @default.
- W2956220464 hasConcept C42536954 @default.
- W2956220464 hasConcept C50644808 @default.
- W2956220464 hasConcept C60092789 @default.
- W2956220464 hasConcept C62520636 @default.
- W2956220464 hasConcept C91602232 @default.
- W2956220464 hasConceptScore W2956220464C119857082 @default.
- W2956220464 hasConceptScore W2956220464C121332964 @default.
- W2956220464 hasConceptScore W2956220464C149782125 @default.
- W2956220464 hasConceptScore W2956220464C154945302 @default.
- W2956220464 hasConceptScore W2956220464C158693339 @default.
- W2956220464 hasConceptScore W2956220464C159877910 @default.
- W2956220464 hasConceptScore W2956220464C161584116 @default.
- W2956220464 hasConceptScore W2956220464C162324750 @default.
- W2956220464 hasConceptScore W2956220464C34727166 @default.
- W2956220464 hasConceptScore W2956220464C41008148 @default.
- W2956220464 hasConceptScore W2956220464C42536954 @default.
- W2956220464 hasConceptScore W2956220464C50644808 @default.
- W2956220464 hasConceptScore W2956220464C60092789 @default.
- W2956220464 hasConceptScore W2956220464C62520636 @default.
- W2956220464 hasConceptScore W2956220464C91602232 @default.
- W2956220464 hasIssue "6" @default.
- W2956220464 hasLocation W29562204641 @default.
- W2956220464 hasLocation W29562204642 @default.
- W2956220464 hasOpenAccess W2956220464 @default.
- W2956220464 hasPrimaryLocation W29562204641 @default.
- W2956220464 hasRelatedWork W2036704594 @default.
- W2956220464 hasRelatedWork W2275178414 @default.
- W2956220464 hasRelatedWork W2606910468 @default.
- W2956220464 hasRelatedWork W2995801509 @default.
- W2956220464 hasRelatedWork W3083782034 @default.
- W2956220464 hasRelatedWork W3116827148 @default.
- W2956220464 hasRelatedWork W3120843198 @default.
- W2956220464 hasRelatedWork W3123153965 @default.
- W2956220464 hasRelatedWork W4226315710 @default.