Matches in SemOpenAlex for { <https://semopenalex.org/work/W2956221158> ?p ?o ?g. }
- W2956221158 endingPage "2833" @default.
- W2956221158 startingPage "2833" @default.
- W2956221158 abstract "(1) Background: Cough is a major presentation in childhood asthma. Here, we aim to develop a machine-learning based cough sound classifier for asthmatic and healthy children. (2) Methods: Children less than 16 years old were randomly recruited in a Children’s Hospital, from February 2017 to April 2018, and were divided into 2 cohorts—healthy children and children with acute asthma presenting with cough. Children with other concurrent respiratory conditions were excluded in the asthmatic cohort. Demographic data, duration of cough, and history of respiratory status were obtained. Children were instructed to produce voluntary cough sounds. These clinically labeled cough sounds were randomly divided into training and testing sets. Audio features such as Mel-Frequency Cepstral Coefficients and Constant-Q Cepstral Coefficients were extracted. Using a training set, a classification model was developed with Gaussian Mixture Model–Universal Background Model (GMM-UBM). Its predictive performance was tested using the test set against the physicians’ labels. (3) Results: Asthmatic cough sounds from 89 children (totaling 1192 cough sounds) and healthy coughs from 89 children (totaling 1140 cough sounds) were analyzed. The sensitivity and specificity of the audio-based classification model was 82.81% and 84.76%, respectively, when differentiating coughs from asthmatic children versus coughs from ‘healthy’ children. (4) Conclusion: Audio-based classification using machine learning is a potentially useful technique in assisting the differentiation of asthmatic cough sounds from healthy voluntary cough sounds in children." @default.
- W2956221158 created "2019-07-23" @default.
- W2956221158 creator A5017989518 @default.
- W2956221158 creator A5019470555 @default.
- W2956221158 creator A5047424674 @default.
- W2956221158 creator A5061649813 @default.
- W2956221158 creator A5067974910 @default.
- W2956221158 creator A5069548004 @default.
- W2956221158 creator A5073927906 @default.
- W2956221158 creator A5074019528 @default.
- W2956221158 creator A5083177942 @default.
- W2956221158 date "2019-07-16" @default.
- W2956221158 modified "2023-10-14" @default.
- W2956221158 title "Development of Machine Learning for Asthmatic and Healthy Voluntary Cough Sounds: A Proof of Concept Study" @default.
- W2956221158 cites W1496717739 @default.
- W2956221158 cites W1541358243 @default.
- W2956221158 cites W1975347914 @default.
- W2956221158 cites W1985520003 @default.
- W2956221158 cites W1990399575 @default.
- W2956221158 cites W1990755053 @default.
- W2956221158 cites W1996432773 @default.
- W2956221158 cites W1997621936 @default.
- W2956221158 cites W2020036515 @default.
- W2956221158 cites W2022667046 @default.
- W2956221158 cites W2029010243 @default.
- W2956221158 cites W2031459477 @default.
- W2956221158 cites W2041823554 @default.
- W2956221158 cites W2047469300 @default.
- W2956221158 cites W2059096749 @default.
- W2956221158 cites W2081275920 @default.
- W2956221158 cites W2122147799 @default.
- W2956221158 cites W2122434665 @default.
- W2956221158 cites W2127090170 @default.
- W2956221158 cites W2129082783 @default.
- W2956221158 cites W2129740575 @default.
- W2956221158 cites W2143928737 @default.
- W2956221158 cites W2157224320 @default.
- W2956221158 cites W2169229292 @default.
- W2956221158 cites W2333457181 @default.
- W2956221158 cites W2484386994 @default.
- W2956221158 cites W2587462306 @default.
- W2956221158 cites W2589473004 @default.
- W2956221158 cites W2590129515 @default.
- W2956221158 cites W2593108779 @default.
- W2956221158 cites W2754136846 @default.
- W2956221158 cites W409191062 @default.
- W2956221158 cites W4299345493 @default.
- W2956221158 doi "https://doi.org/10.3390/app9142833" @default.
- W2956221158 hasPublicationYear "2019" @default.
- W2956221158 type Work @default.
- W2956221158 sameAs 2956221158 @default.
- W2956221158 citedByCount "25" @default.
- W2956221158 countsByYear W29562211582019 @default.
- W2956221158 countsByYear W29562211582020 @default.
- W2956221158 countsByYear W29562211582021 @default.
- W2956221158 countsByYear W29562211582022 @default.
- W2956221158 countsByYear W29562211582023 @default.
- W2956221158 crossrefType "journal-article" @default.
- W2956221158 hasAuthorship W2956221158A5017989518 @default.
- W2956221158 hasAuthorship W2956221158A5019470555 @default.
- W2956221158 hasAuthorship W2956221158A5047424674 @default.
- W2956221158 hasAuthorship W2956221158A5061649813 @default.
- W2956221158 hasAuthorship W2956221158A5067974910 @default.
- W2956221158 hasAuthorship W2956221158A5069548004 @default.
- W2956221158 hasAuthorship W2956221158A5073927906 @default.
- W2956221158 hasAuthorship W2956221158A5074019528 @default.
- W2956221158 hasAuthorship W2956221158A5083177942 @default.
- W2956221158 hasBestOaLocation W29562211581 @default.
- W2956221158 hasConcept C126322002 @default.
- W2956221158 hasConcept C2776042228 @default.
- W2956221158 hasConcept C2777402568 @default.
- W2956221158 hasConcept C40956017 @default.
- W2956221158 hasConcept C42219234 @default.
- W2956221158 hasConcept C548259974 @default.
- W2956221158 hasConcept C71924100 @default.
- W2956221158 hasConcept C72563966 @default.
- W2956221158 hasConcept C83974742 @default.
- W2956221158 hasConceptScore W2956221158C126322002 @default.
- W2956221158 hasConceptScore W2956221158C2776042228 @default.
- W2956221158 hasConceptScore W2956221158C2777402568 @default.
- W2956221158 hasConceptScore W2956221158C40956017 @default.
- W2956221158 hasConceptScore W2956221158C42219234 @default.
- W2956221158 hasConceptScore W2956221158C548259974 @default.
- W2956221158 hasConceptScore W2956221158C71924100 @default.
- W2956221158 hasConceptScore W2956221158C72563966 @default.
- W2956221158 hasConceptScore W2956221158C83974742 @default.
- W2956221158 hasIssue "14" @default.
- W2956221158 hasLocation W29562211581 @default.
- W2956221158 hasOpenAccess W2956221158 @default.
- W2956221158 hasPrimaryLocation W29562211581 @default.
- W2956221158 hasRelatedWork W2018948120 @default.
- W2956221158 hasRelatedWork W2052139239 @default.
- W2956221158 hasRelatedWork W2091064995 @default.
- W2956221158 hasRelatedWork W2336746283 @default.
- W2956221158 hasRelatedWork W2374430816 @default.
- W2956221158 hasRelatedWork W2410569622 @default.
- W2956221158 hasRelatedWork W2603773853 @default.
- W2956221158 hasRelatedWork W4235375593 @default.